
spans_inside_divs = [span
 for div in soup('div') # for each <div> on the page
 for span in div('span')] # find each inside it

Just this handful of features will allow us to do quite a lot. If you end up needing to do
more-complicated things (or if you’re just curious), check the documentation.

Of course, whatever data is important won’t typically be labeled as class="impor
tant". You’ll need to carefully inspect the source HTML, reason through your selec‐
tion logic, and worry about edge cases to make sure your data is correct. Let’s look at
an example.

Example: O’Reilly Books About Data
A potential investor in DataSciencester thinks data is just a fad. To prove him wrong,
you decide to examine how many data books O’Reilly has published over time. After
digging through its website, you find that it has many pages of data books (and vid‐
eos), reachable through 30-items-at-a-time directory pages with URLs like:

http://shop.oreilly.com/category/browse-subjects/data.do?
sortby=publicationDate&page=1

Unless you want to be a jerk (and unless you want your scraper to get banned), when‐
ever you want to scrape data from a website you should first check to see if it has
some sort of access policy. Looking at:

http://oreilly.com/terms/

there seems to be nothing prohibiting this project. In order to be good citizens, we
should also check for a robots.txt file that tells webcrawlers how to behave. The
important lines in http://shop.oreilly.com/robots.txt are:

Crawl-delay: 30
Request-rate: 1/30

The first tells us that we should wait 30 seconds between requests, the second that we
should request only one page every 30 seconds. So basically they’re two different ways
of saying the same thing. (There are other lines that indicate directories not to scrape,
but they don’t include our URL, so we’re OK there.)

There’s always the possibility that O’Reilly will at some point
revamp its website and break all the logic in this section. I will do
what I can to prevent that, of course, but I don’t have a ton of influ‐
ence over there. Although, if every one of you were to convince
everyone you know to buy a copy of this book…

To figure out how to extract the data, let’s download one of those pages and feed it to
Beautiful Soup:

110 | Chapter 9: Getting Data

www.it-ebooks.info

http://shop.oreilly.com/robots.txt
http://www.it-ebooks.info/

you don't have to split the url like this unless it needs to fit in a book
url = "http://shop.oreilly.com/category/browse-subjects/" + \
 "data.do?sortby=publicationDate&page=1"
soup = BeautifulSoup(requests.get(url).text, 'html5lib')

If you view the source of the page (in your browser, right-click and select “View
source” or “View page source” or whatever option looks the most like that), you’ll see
that each book (or video) seems to be uniquely contained in a <td> table cell element
whose class is thumbtext. Here is (an abridged version of) the relevant HTML for
one book:

<td class="thumbtext">
 <div class="thumbcontainer">
 <div class="thumbdiv">

 </div>
 </div>
 <div class="widthchange">
 <div class="thumbheader">
 Getting a Big Data Job For Dummies
 </div>
 <div class="AuthorName">By Jason Williamson</div>
 December 2014
 <div style="clear:both;">
 <div id="146350">

 Ebook:

 $29.99

 </div>
 </div>
 </div>
</td>

A good first step is to find all of the td thumbtext tag elements:
tds = soup('td', 'thumbtext')
print len(tds)
30

Next we’d like to filter out the videos. (The would-be investor is only impressed by
books.) If we inspect the HTML further, we see that each td contains one or more
span elements whose class is pricelabel, and whose text looks like Ebook: or
Video: or Print:. It appears that the videos contain only one pricelabel, whose
text starts with Video (after removing leading spaces). This means we can test for
videos with:

def is_video(td):
 """it's a video if it has exactly one pricelabel, and if

Scraping the Web | 111

www.it-ebooks.info

http://www.it-ebooks.info/

 the stripped text inside that pricelabel starts with 'Video'"""
 pricelabels = td('span', 'pricelabel')
 return (len(pricelabels) == 1 and
 pricelabels[0].text.strip().startswith("Video"))

print len([td for td in tds if not is_video(td)])
21 for me, might be different for you

Now we’re ready to start pulling data out of the td elements. It looks like the book
title is the text inside the <a> tag inside the <div class="thumbheader">:

title = td.find("div", "thumbheader").a.text

The author(s) are in the text of the AuthorName <div>. They are prefaced by a By
(which we want to get rid of) and separated by commas (which we want to split out,
after which we’ll need to get rid of spaces):

author_name = td.find('div', 'AuthorName').text
authors = [x.strip() for x in re.sub("^By ", "", author_name).split(",")]

The ISBN seems to be contained in the link that’s in the thumbheader <div>:
isbn_link = td.find("div", "thumbheader").a.get("href")

re.match captures the part of the regex in parentheses
isbn = re.match("/product/(.*)\.do", isbn_link).group(1)

And the date is just the contents of the :
date = td.find("span", "directorydate").text.strip()

Let’s put this all together into a function:
def book_info(td):
 """given a BeautifulSoup <td> Tag representing a book,
 extract the book's details and return a dict"""

 title = td.find("div", "thumbheader").a.text
 by_author = td.find('div', 'AuthorName').text
 authors = [x.strip() for x in re.sub("^By ", "", by_author).split(",")]
 isbn_link = td.find("div", "thumbheader").a.get("href")
 isbn = re.match("/product/(.*)\.do", isbn_link).groups()[0]
 date = td.find("span", "directorydate").text.strip()

 return {
 "title" : title,
 "authors" : authors,
 "isbn" : isbn,
 "date" : date
 }

And now we’re ready to scrape:
from bs4 import BeautifulSoup
import requests

112 | Chapter 9: Getting Data

www.it-ebooks.info

http://www.it-ebooks.info/

from time import sleep
base_url = "http://shop.oreilly.com/category/browse-subjects/" + \
 "data.do?sortby=publicationDate&page="

books = []

NUM_PAGES = 31 # at the time of writing, probably more by now

for page_num in range(1, NUM_PAGES + 1):
 print "souping page", page_num, ",", len(books), " found so far"
 url = base_url + str(page_num)
 soup = BeautifulSoup(requests.get(url).text, 'html5lib')

 for td in soup('td', 'thumbtext'):
 if not is_video(td):
 books.append(book_info(td))

 # now be a good citizen and respect the robots.txt!
 sleep(30)

Extracting data from HTML like this is more data art than data sci‐
ence. There are countless other find-the-books and find-the-title
logics that would have worked just as well.

Now that we’ve collected the data, we can plot the number of books published each
year (Figure 9-1):

def get_year(book):
 """book["date"] looks like 'November 2014' so we need to
 split on the space and then take the second piece"""
 return int(book["date"].split()[1])

2014 is the last complete year of data (when I ran this)
year_counts = Counter(get_year(book) for book in books
 if get_year(book) <= 2014)

import matplotlib.pyplot as plt
years = sorted(year_counts)
book_counts = [year_counts[year] for year in years]
plt.plot(years, book_counts)
plt.ylabel("# of data books")
plt.title("Data is Big!")
plt.show()

Scraping the Web | 113

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 9-1. Number of data books per year

Unfortunately, the would-be investor looks at the graph and decides that 2013 was
“peak data.”

Using APIs
Many websites and web services provide application programming interfaces (APIs),
which allow you to explicitly request data in a structured format. This saves you the
trouble of having to scrape them!

JSON (and XML)
Because HTTP is a protocol for transferring text, the data you request through a web
API needs to be serialized into a string format. Often this serialization uses JavaScript
Object Notation (JSON). JavaScript objects look quite similar to Python dicts, which
makes their string representations easy to interpret:

{ "title" : "Data Science Book",
 "author" : "Joel Grus",
 "publicationYear" : 2014,
 "topics" : ["data", "science", "data science"] }

114 | Chapter 9: Getting Data

www.it-ebooks.info

http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Preface
	Data Science
	From Scratch
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction
	The Ascendance of Data
	What Is Data Science?
	Motivating Hypothetical: DataSciencester
	Finding Key Connectors
	Data Scientists You May Know
	Salaries and Experience
	Paid Accounts
	Topics of Interest
	Onward

	Chapter 2. A Crash Course in Python
	The Basics
	Getting Python
	The Zen of Python
	Whitespace Formatting
	Modules
	Arithmetic
	Functions
	Strings
	Exceptions
	Lists
	Tuples
	Dictionaries
	Sets
	Control Flow
	Truthiness

	The Not-So-Basics
	Sorting
	List Comprehensions
	Generators and Iterators
	Randomness
	Regular Expressions
	Object-Oriented Programming
	Functional Tools
	enumerate
	zip and Argument Unpacking
	args and kwargs
	Welcome to DataSciencester!

	For Further Exploration

	Chapter 3. Visualizing Data
	matplotlib
	Bar Charts
	Line Charts
	Scatterplots
	For Further Exploration

	Chapter 4. Linear Algebra
	Vectors
	Matrices
	For Further Exploration

	Chapter 5. Statistics
	Describing a Single Set of Data
	Central Tendencies
	Dispersion

	Correlation
	Simpson’s Paradox
	Some Other Correlational Caveats
	Correlation and Causation
	For Further Exploration

	Chapter 6. Probability
	Dependence and Independence
	Conditional Probability
	Bayes’s Theorem
	Random Variables
	Continuous Distributions
	The Normal Distribution
	The Central Limit Theorem
	For Further Exploration

	Chapter 7. Hypothesis and Inference
	Statistical Hypothesis Testing
	Example: Flipping a Coin
	Confidence Intervals
	P-hacking
	Example: Running an A/B Test
	Bayesian Inference
	For Further Exploration

	Chapter 8. Gradient Descent
	The Idea Behind Gradient Descent
	Estimating the Gradient
	Using the Gradient
	Choosing the Right Step Size
	Putting It All Together
	Stochastic Gradient Descent
	For Further Exploration

	Chapter 9. Getting Data
	stdin and stdout
	Reading Files
	The Basics of Text Files
	Delimited Files

	Scraping the Web
	HTML and the Parsing Thereof
	Example: O’Reilly Books About Data

	Using APIs
	JSON (and XML)
	Using an Unauthenticated API
	Finding APIs

	Example: Using the Twitter APIs
	Getting Credentials

	For Further Exploration

	Chapter 10. Working with Data
	Exploring Your Data
	Exploring One-Dimensional Data
	Two Dimensions
	Many Dimensions

	Cleaning and Munging
	Manipulating Data
	Rescaling
	Dimensionality Reduction
	For Further Exploration

	Chapter 11. Machine Learning
	Modeling
	What Is Machine Learning?
	Overfitting and Underfitting
	Correctness
	The Bias-Variance Trade-off
	Feature Extraction and Selection
	For Further Exploration

	Chapter 12. k-Nearest Neighbors
	The Model
	Example: Favorite Languages
	The Curse of Dimensionality
	For Further Exploration

	Chapter 13. Naive Bayes
	A Really Dumb Spam Filter
	A More Sophisticated Spam Filter
	Implementation
	Testing Our Model
	For Further Exploration

	Chapter 14. Simple Linear Regression
	The Model
	Using Gradient Descent
	Maximum Likelihood Estimation
	For Further Exploration

	Chapter 15. Multiple Regression
	The Model
	Further Assumptions of the Least Squares Model
	Fitting the Model
	Interpreting the Model
	Goodness of Fit
	Digression: The Bootstrap
	Standard Errors of Regression Coefficients
	Regularization
	For Further Exploration

	Chapter 16. Logistic Regression
	The Problem
	The Logistic Function
	Applying the Model
	Goodness of Fit
	Support Vector Machines
	For Further Investigation

	Chapter 17. Decision Trees
	What Is a Decision Tree?
	Entropy
	The Entropy of a Partition
	Creating a Decision Tree
	Putting It All Together
	Random Forests
	For Further Exploration

	Chapter 18. Neural Networks
	Perceptrons
	Feed-Forward Neural Networks
	Backpropagation
	Example: Defeating a CAPTCHA
	For Further Exploration

	Chapter 19. Clustering
	The Idea
	The Model
	Example: Meetups
	Choosing k
	Example: Clustering Colors
	Bottom-up Hierarchical Clustering
	For Further Exploration

	Chapter 20. Natural Language Processing
	Word Clouds
	n-gram Models
	Grammars
	An Aside: Gibbs Sampling
	Topic Modeling
	For Further Exploration

	Chapter 21. Network Analysis
	Betweenness Centrality
	Eigenvector Centrality
	Matrix Multiplication
	Centrality

	Directed Graphs and PageRank
	For Further Exploration

	Chapter 22. Recommender Systems
	Manual Curation
	Recommending What’s Popular
	User-Based Collaborative Filtering
	Item-Based Collaborative Filtering
	For Further Exploration

	Chapter 23. Databases and SQL
	CREATE TABLE and INSERT
	UPDATE
	DELETE
	SELECT
	GROUP BY
	ORDER BY
	JOIN
	Subqueries
	Indexes
	Query Optimization
	NoSQL
	For Further Exploration

	Chapter 24. MapReduce
	Example: Word Count
	Why MapReduce?
	MapReduce More Generally
	Example: Analyzing Status Updates
	Example: Matrix Multiplication
	An Aside: Combiners
	For Further Exploration

	Chapter 25. Go Forth and Do Data Science
	IPython
	Mathematics
	Not from Scratch
	NumPy
	pandas
	scikit-learn
	Visualization
	R

	Find Data
	Do Data Science
	Hacker News
	Fire Trucks
	T-shirts
	And You?

	Index
	About the Author

