
CS 133 - Introduction to
Computational and Data Science

Instructor: Renzhi Cao
Computer Science Department

Pacific Lutheran University
Spring 2017

1

Introduction to Python II

• In the previous class, you have learned lists, dictionary,
tuples, and how to write functions.

def sum(x,y) :
 print x
 print y
 result = x + y
 return result

sum(1,2)

Pass the value to the parameters x and y

sum(3,4)
sum(4,5)

The function practice

• Check the website and implement functions

Booleans

• 0 and None are false
• Everything else is true
• True and False are aliases for 1 and 0 respectively

Control flow
Things that are False
• The boolean value False
• The numbers 0 (integer), 0.0 (float) and 0j (complex).
• The empty string "".
• The empty list [], empty dictionary {} and empty set set().
Things that are True
• The boolean value True
• All non-zero numbers.
• Any string containing at least one character.
• A non-empty data structure.

Control flow

There are cases that you want specific block of code to be
functional when some condition is true.
• User type ‘yes’, do calculation, type ‘no’, quit program
• When temperature is higher than 100 degree, print ‘hot’.
• When your bank account has 0 balance, user cannot

withdraw any money.

If statement

• if expression: # expression is boolean type
 do something when expression is True
 [else:] # this is optional

The code we have seen before is “always” executed.
How would we create cases in which only some code is
executed?

If statement

>>> smiles = "BrC1=CC=C(C=C1)NN.Cl"
>>> bool(smiles)
True
>>> not bool(smiles)
False
>>> if not smiles:
... print "The SMILES string is empty"
...
The “else” case is always optional

If statement

>if x% 2 = = 0:

 print 'x is even'

else:

 print 'x is odd‘

What is the % doing here?

If statement

>if x = = y:

 print 'x and y are equal'

else:

 if x < y:

 print 'x is less than y'

 else:

 print 'x is greater than y‘

Observe the use of indentation

“elif”
>>> mode = "absolute"
>>> if mode == "canonical":
... smiles = "canonical"
... elif mode == "isomeric":
... smiles = "isomeric”
... elif mode == "absolute":
... smiles = "absolute"
... else:
... raise TypeError("unknown mode")
...
>>> smiles
' absolute '
>>>
“raise” is the Python way to raise exceptions

1. Get user’s score, save it as variable score.
2. print ‘A’ for score in [90,100], ‘B’ for [80,90), ‘C’ for [70,80), ‘D’ for

rest of scores.

Practices

Boolean logic
Python expressions can have “and”, “or”:

if(a <= 10 and b >= 10 or a == 100 and b!= 5):
 print “Hello”

if(3 <= a <= 100):
 print “great!”

For statement
Python use “for” as keyword to handle loops.

For statement

• >>> names = [“cao”, “python”]
• >>> for name in names:
 print name

For statement

data = [("C20H20O3", 308.371),
 ("C22H20O2", 316.393),
 ("C24H40N4O2", 416.6),
 ("C14H25N5O3", 311.38),
 ("C15H20O2", 232.3181)]

for (formula, mw) in data:
 print "The molecular weight of %s is %s" % (formula, mw)

The molecular weight of C20H20O3 is 308.371
The molecular weight of C22H20O2 is 316.393
The molecular weight of C24H40N4O2 is 416.6
The molecular weight of C14H25N5O3 is 311.38
The molecular weight of C15H20O2 is 232.3181

Loop Control Statements

break Jumps out of the closest enclosing
loop

continue Jumps to the top of the closest
enclosing loop

pass Does nothing, empty statement
placeholder

Break and continue in loop

>>> for value in [3, 1, 4, 1, 5, 9, 2]:
... print "Checking", value
... if value > 8:
... print "Exiting for loop"
... break
... elif value < 3:
... print "Ignoring"
... continue
... print "The square is", value**2
...

Range
• “range” creates a list of numbers in a specified range
• range([start,] stop[, step]) -> list of integers
• When step is given, it specifies the increment (or decrement).
>>> range(5)
[0, 1, 2, 3, 4]
>>> range(5, 10)
[5, 6, 7, 8, 9]
>>> range(0, 10, 2)
[0, 2, 4, 6, 8]

How to get every second element in a list?
for i in range(0, len(data), 2):
 print data[i]

while
Similar to for, the usage is:

while expression:
 always do when expression is True.

>while True:

 line = raw_input(' > ')

 if line = = 'done':

 break

 print line

print 'Done!‘

How to expand to accept other words?

while

while
Set a condition for the loop to end

>def sequence(n):

 while n != 1:

 print n,

 if n% 2 = = 0: # n is even

 n = n/ 2

 else: # n is odd

 n = n* 3 + 1

Practice

Practice

