
CS 133 - Introduction to
Computational and Data Science

Instructor: Renzhi Cao
Computer Science Department

Pacific Lutheran University
Spring 2017

1

Introduction to Python II

• In the previous class, you have learned how to create a
python script, get input from user, object type of
number and strings.

• What tool we used to edit Python code?
• How to run python code?
• Is “Print” a valid variable name?
• Is “int” a valid variable name?
• Is “Int” a valid variable name?

Introduction to Python II

• Today we are going to learn String, Lists, and tuples,
dictionaries, and functions.

• >>> x = 1.5
• >>> y = x
• >>> y = x + 1.5

• >>> x

• >>> y

Tracing variable’s value

Exercises
• First test your program from command prompt
• Use Atom (text editor) to create python script - test.py, and run it

• The raw_input(string) method returns a line of user input as a string
• The parameter is used as a prompt
• The string can be converted by using the conversion methods

int(string), float(string), etc.

Input

Exercises

• Try to use raw_input to get a score from the user, multiply it by
10, and print out the result.

Strings

• Record both textual information (your name as example) and
arbitrary collections of bytes (such as image file’s contents)

• Strings are sequences of characters.

• Strings are immutable
• + is overloaded to do concatenation

>>> x = 'hello'
>>> x = x + ' there'
>>> x
'hello there'

Strings

• Can use single or double quotes, and three double quotes for
a multi-line string

>>> 'I am a string'
'I am a string'
>>> "So am I!"
'So am I!'
>>> s = """And me too!
though I am much longer
than the others :)"""
'And me too!\nthough I am much longer\nthan the others :)‘
>>> print s
And me too!
though I am much longer
than the others :)

String Literals: Many Kinds

• len(String) – returns the number of characters in the
String

• str(Object) – returns a String representation of the
Object

>>> len(x)
6
>>> str(10.3)
'10.3'

Substrings and Methods

smiles = "C(=N)(N)N.C(=O)(O)O"
>>> smiles.find("(O)")
15
>>> smiles.find(".")
9
>>> smiles.find(".", 10)
-1
>>> smiles.split(".")
['C(=N)(N)N', 'C(=O)(O)O']
>>>

Use “find” to find the
start of a substring.

Start looking at position 10.

Find returns -1 if it couldn’t
find a match.

Split the string into parts
with “.” as the delimiter

String Methods: find , split

if "Br" in “Brother”:
 print "contains brother“

email_address = “clin”
if "@" not in email_address:
 email_address += "@brandeis.edu“

String operators: in, not in

• Similar to C’s printf (%s for string, %d for integer).
• <formatted string> % <elements to insert>
• Can usually just use %s for everything, it will convert

the object to its String representation.

>>> "One, %d, three" % 2
'One, 2, three'
>>> "%d, two, %s" % (1,3)
'1, two, 3'
>>> "%s two %s" % (1, 'three')
'1 two three'
>>>

String Formatting

Strings

>fruit = ‘banana’
>letter = fruit[1]
>len(fruit)
>fruit[-1]
>fruit[-2]

 Traverse a string
>for char in fruit:
 print char
>r= fruit[0:2]

Strings

>fruit = ‘banana’

>fruit[:] # all of fruit as a top-level copy (0:len(fruit))

> fruit + ‘xyz’ # Concatenation

> fruit * 8 # Repetition

> fruit[0] = ‘a’ # immutable objects cannot be changed

> new = ‘a’ + fruit[1:] # this is fine

 Strings have methods:

>word= “banana”

>word.find(‘a’) or word.upper() or word.replace(‘a’,’b’) or word.split(‘,’)

> S = ‘aaa,bbb,ccc, dd\n’

> S.rstrip() # remove whitespace characters on the right side

>dir(S) # help

Strings

 Create a script that:

1. Create a string with any characters in total length of 10. (you can
manually assign it or asks the user - Raw_input method)

2. Prints the string letter by letter. Each letter in a different line

3. Prints the string in lower case

4. Prints the string in upper case

5. Prints the string backwards

6. Create string with “,” inside, and use split method to process it

7. Prints first three characters

8. Prints last four characters

Exercise

• Ordered collection of data
• Data can be of different types
• Lists are mutable
• Issues with shared references

and mutability
• Same subset operations as

Strings

>>> x = [1,'hello', (3 + 2j)]
>>> x
[1, 'hello', (3+2j)]
>>> x[2]
(3+2j)
>>> x[0:2]
[1, 'hello']

Lists

• x[i] = a reassigns the ith
element to the value a

• Since x and y point to the
same list object, both are
changed

• The method append also
modifies the list

>>> x = [1,2,3]
>>> y = x
>>> x[1] = 15
>>> x
[1, 15, 3]
>>> y
[1, 15, 3]
>>> x.append(12)
>>> y
[1, 15, 3, 12]

Lists: Modifying Content

• The method append
modifies the list and
returns None

• List addition (+)
returns a new list

>>> x = [1,2,3]
>>> y = x
>>> z = x.append(12)
>>> z == None
True
>>> y
[1, 2, 3, 12]
>>> x = x + [9,10]
>>> x
[1, 2, 3, 12, 9, 10]
>>> y
[1, 2, 3, 12]
>>>

Lists: Modifying Content

>[10,20,30,40]

>[‘spam’, 20.0, 5, [10,20]]

>cheeses = [' Cheddar', 'Edam', 'Gouda']

>numbers=[17,123]

 Traverse a list

>for cheese in cheeses:

 print cheese

>for i in range(len(numbers)):

 numbers[i] = numbers[i] * 2

> numbers.extend([1,2,3]) # another way to append elements

Lists: examples

 Delete element

>t = [' a', 'b', 'c']

>x = t.pop(1)

 OR

>del t[1]

 OR

>t.remove(' b‘)

Lists: examples

 1. Create CS133_Lists.py using Atom

 2. Create String type ‘str’, the value is “CS133”

 3. Assign 2017 to a variable ‘year’

 4. Create a List type ‘newList’, and assign variable
‘year’ to it

 5. Add ‘str’ to the ‘newList’

 6. Add first two characters of ‘year’ to the end of
‘newList’

 7. Delete first element in ‘newList’

 8. Append [1,2,3] to ‘newList’, and print out
‘newList’ and it’s length

Lists: Practice

• Tuples are immutable versions
of lists

• One strange point is the format
to make a tuple with one
element:

 ‘,’ is needed to differentiate
from the mathematical
expression (2)

>>> x = (1,2,3)
>>> x[1:]
(2, 3)
>>> y = (2,)
>>> y
(2,)
>>> z = [1,2,3]
>>> z[0] = 1
>>> x[0] = 1

Tuples

• A set of key-value pairs. Like a list, but
indices don’t have to be a sequence of
integers.

• Dictionaries are mutable

>>> d = {1 : 'hello', 'two' : 42, 'blah' : [1,2,3]}
>>> d
{1: 'hello', 'two': 42, 'blah': [1, 2, 3]}
>>> d['blah']
[1, 2, 3]

Dictionaries

• The function dict() creates a new
dictionary with no items
>>> newDic = dict()

>>> newDic[‘one’] = ‘Hello’
>>> newDic = {‘one’:’Hello’, ‘two’:’Great’,
‘3’:’CS133’}

• Use [] to initialize new items

Dictionaries

>>> d
{1: 'hello', 'two': 42, 'blah': [1, 2, 3]}
>>> d['two'] = 99
>>> d
{1: 'hello', 'two': 99, 'blah': [1, 2, 3]}

>>> d[7] = 'new entry'
>>> d
{1: 'hello', 7: 'new entry', 'two': 99, 'blah': [1, 2, 3]}

• Entries can be changed by assigning to that entry

• Assigning to a key that does not exist adds an entry

Dictionaries: Add/Modify

• The del method deletes an element from a dictionary

>>> d
{1: 'hello', 2: 'there', 10: 'world'}
>>> del(d[2])
>>> d
{1: 'hello', 10: 'world'}

Dictionaries: Deleting Elements

• The built-in list
function will copy a
list

• The dictionary has a
method called copy

>>> l1 = [1]
>>> l2 = list(l1)
>>> l1[0] = 22
>>> l1
[22]
>>> l2
[1]

>>> d = {1 : 10}
>>> d2 = d.copy()
>>> d[1] = 22
>>> d
{1: 22}
>>> d2
{1: 10}

Copying Dictionaries and Lists

• Functions are “magic boxes” that will return values
based on the input. There is an endless number of
functions already created for you. Some examples:

• int(’32’) float(22) str(21)

Functions

Not all functions are included by default. You need to call
the module that include them. To do that, you need to
type the word import followed by the name of the
module.
• import math
• You can rename the module by using
• import math as m

def max(x,y) :
 if x < y :
 return x
 else :
 return y

>>> import functionbasics
>>> max(3,5)
5
>>> max('hello', 'there')
'there'
>>> max(3, 'hello')
'hello'

functionbasics.py

Function Basics

• Can be assigned to a variable
• Can be passed as a parameter
• Can be returned from a function
• Functions are treated like any other variable in Python,

the def statement simply assigns a function to a
variable

Functions are first class objects

Order is important!!!
• Always declare your function before you try to use it

Adding new functions

• Functions can be of two types:
• void
• Non-void

• Void functions are just like the functions we just
created: They don’t return any value.

def test(n,m,r):
sol = n + m + r
print sol

• This type of function usually shows the result internally

A non-void function returns a value to the caller.
• This is very important since the function might just

calculate one value of the “main” calculation
• We need to use the word return at the end of the

function

def test(x,n,m):
 sol = x + n + m
 return sol
sol is a value that now is available to be used later.

Non-void functions

• Functions are objects
• The same reference rules

hold for them as for other
objects

>>> x = 10
>>> x
10
>>> def x () :
... print 'hello'
>>> x
<function x at 0x619f0>
>>> x()
hello
>>> x = 'blah'
>>> x
'blah'

Function names are like any variable

def foo(f, a) :
 return f(a)

def bar(x) :
 return x * x

>>> from funcasparam import *
>>> foo(bar, 3)
9

Note that the function foo takes two
parameters and applies the first as a function
with the second as its parameter

funcasparam.py

Functions as Parameters

• Since they are like any other object, you can have
functions inside functions

def foo (x,y) :
 def bar (z) :
 return z * 2
 return bar(x) + y

>>> from funcinfunc import *
>>> foo(2,3)
7

funcinfunc.py

Functions Inside Functions

def foo (x) :
 def bar(y) :
 return x + y
 return bar
main
f = foo(3)
print f
print f(2)

~: python funcreturnfunc.py
<function bar at 0x612b0>
5

funcreturnfunc.py

Functions Returning Functions

• Parameters can be
assigned default values

• They are overridden if a
parameter is given for
them

• The type of the default
doesn’t limit the type of a
parameter

>>> def foo(x = 3) :
... print x
...
>>> foo()
3
>>> foo(10)
10
>>> foo('hello')
hello

Parameters: Defaults

• Call by name
• Any positional

arguments must
come before named
ones in a call

>>> def foo (a,b,c) :
... print a, b, c
...
>>> foo(c = 10, a = 2, b = 14)
2 14 10
>>> foo(3, c = 2, b = 19)
3 19 2

Parameters: Named

• A lambda expression
returns a function
object

• The body can only be a
simple expression, not
complex statements

>>> f = lambda x,y : x + y
>>> f(2,3)
5
>>> lst = ['one', lambda x : x * x, 3]
>>> lst[1](4)
16

Anonymous Functions

1. Create multiple void functions that:
1. Print the word “Hello” 3 times
2. Print the word “Hello name!” in which name is replaced by an

input given by the user. Example: If input is Cao, it will print
“Hello Cao!”

3. Calculate the multiplication of the 3 inputs received by this
function and print the result

2. Create multiple non-void functions that:
1. Return the word “Hello” 3 times
2. Return the word “Hello name!” in which name is replaced by an

input given by the user. Example: If input is Cao, it will print
“Hello Cao!”

3. Calculate the multiplication of the 3 inputs received by this
function and return the result

Practices

After class

1. Practice and get familiar with Atom, command prompt

2. Try examples using python, such as Integer, Strings

Additional functions as reference

map(func,seq) – for all i, applies func(seq[i]) and returns the
corresponding sequence of the calculated results.

def double(x):
 return 2*x

>>> from highorder import *
>>> lst = range(10)
>>> lst
[0,1,2,3,4,5,6,7,8,9]
>>> map(double,lst)
[0,2,4,6,8,10,12,14,16,18]highorder.py

Higher-Order Functions

filter(boolfunc,seq) – returns a sequence containing all those items in seq
for which boolfunc is True.

def even(x):
 return ((x%2 == 0)

>>> from highorder import *
>>> lst = range(10)
>>> lst
[0,1,2,3,4,5,6,7,8,9]
>>> filter(even,lst)
[0,2,4,6,8]highorder.py

Higher-Order Functions

reduce(func,seq) – applies func to the items of seq, from left to right, two-
at-time, to reduce the seq to a single value.

def plus(x,y):
 return (x + y)

>>> from highorder import *
>>> lst = [‘h’,’e’,’l’,’l’,’o’]
>>> reduce(plus,lst)
‘hello’

highorder.py

Higher-Order Functions

