CS 133 - Introduction to
Computational and Data Science

Instructor: Renzhi Cao
Computer Science Department
Pacific Lutheran University
Spring 2017

Introduction to Python Il

In the previous class, you have learned how to create a
python script, get input from user, object type of
number and strings.

* What tool we used to edit Python code?
 How to run python code?

o Is “Print” a valid variable name?

* Is “int” a valid variable name?

e Is “Int” a valid variable name?

Introduction to Python Il

Today we are going to learn String, Lists, and tuples,
dictionaries, and functions.

Tracing variable’s value

>>>x=1.5
>>>y=X
>>>y=x—|—l,5

>>> X

>>> y

Exercises

First test your program from command prompt

Use Atom (text editor) to create python script - test.py, and run 1t

Assume that we execute the following assignment

statements:
width = 17
height = 12.0
delimiter = ".'

For each of the following expressions, write the value
of the expression and the type (of the value of the
expression).

1. width/2
width/2.0
height/3

1 +2 *5

—

SRS

. delimiter * 5

wn

Use the Python interpreter to check your answers.

Input

The raw_input(string) method returns a line of user input as a string

The parameter 1s used as a prompt

The string can be converted by using the conversion methods
int(string), float(string), etc.

Exercises

 Try to use raw_input to get a score from the user, multiply 1t by
10, and print out the result.

Strings

« Record both textual information (your name as example) and
arbitrary collections of bytes (such as image file’s contents)

« Strings are sequences of characters.

Strings

« Strings are immutable

« +1s overloaded to do concatenation

>>> x = "hello'
>>>x = x + ' there'
>>> X

'hello there'

String Literals: Many Kinds

e (Can use single or double quotes, and three double quotes for
a multi-line string

>>>'] am a string’

'l am a string'

>>>"So am I!"

'So am [!'

>>> g ="""And me too!
though I am much longer
than the others :)"""

'And me too!\nthough I am much longer\nthan the others :)°
>>> print s

And me too!

though I am much longer
than the others :)

Substrings and Methods

* len(String) — returns the number of characters in the
String

* str(Object) — returns a String representation of the
Object

>>> len(x)
6
>>> str(10.3)
'10.3’

String Methods: find , split

smiles = "C(=N)(N)N.C(=0)(0)0"
)

>>> smiles.find("(0)"

15

>>> smiles.find(".")

9

>>> smiles.find(".", 10)

-1

>>> smiles.split(".")

[C(=

>>>

N)(N)N', 'C(=0)(0)07]

Use “find” to find the
start of a substring.

Start looking at position 10.

Find returns -1 if it couldn’t
find a match.

Split the string into parts
with “.” as the delimiter

String operators: in, not in

if "Br” in “Brother”:
print “contains brother*

email address = “clin”
if "@" not in email _address:
email address += "@brandeis.edu®

String Formatting

» Similar to C’s printf (%s for string, %d for integer).
« <formatted string> % <elements to insert>

* Can usually just use %s for everything, it will convert
the object to its String representation.

>>>"One, %d, three" % 2
'One, 2, three'

>>>"%d, two, %s" % (1,3)

'1, two, 3'

>>>"%s two %s" % (1, 'three')

'l two three'
>>>

Strings

>fruit = ‘banana’
>letter = fruit[1]
>len(fruit)
>fruit[-1]
>fruit[-2]
Traverse a string
>for char in fruit:

print char
>r= fruit[0:2]

Strings

>fruit = ‘banana’

>fruit[:] # all of fruit as a top-level copy (0:len(fruit))
> fruit + ‘xyz’ # Concatenation
> fruit * 8 # Repetition

> fruit[0] = ‘@’ # immutable objects cannot be changed

> new = ‘@’ + fruit[1:] # this is fine

Strings

Strings have methods:
>word= “banana”
>word.find(‘a’) or word.upper() or word.replace(‘a’,’b’) or word.split(*,’)

> S = ‘aaa,bbb,ccc, dd\n’
> S.rstrip() # remove whitespace characters on the right side

>dir(S) # help

Exercise

Create a script that:

1.

Create a string with any characters in total length of 10. (you can
manually assign it or asks the user - Raw_input method)

Prints the string letter by letter. Each letter in a different line
Prints the string in lower case

Prints the string in upper case

Prints the string backwards

9

Create string with “,” inside, and use split method to process it
Prints first three characters

Prints last four characters

Lists

Ordered collection of data

Data can be of different types

. >>>x = [1,'hello’, (3 + 2j)]
Lists are mutable >>> x
Issues with shared references [1, 'hello’, (3+2)]
and mutability (>3>+>2?§[2]
: J
Sarpe subset operations as >>> x[0:2]
Strings [1, hello']

Lists: Modifying Content

e x[i] =a reassigns the ith
element to the value a
e Since x and y point to the

same list object, both are
changed

* The method append also
modifies the list

>>>x=[1,2,3]
>>> y =X
>>>x[1]=15
>>> x

[1, 15, 3]

>>>y

[1, 15, 3]

>>> x.append(12)
>>>y

11,15, 3, 12]

Lists: Modifying Content

* The method append
modifies the list and

returns None
 List addition (+)

returns a new list

>>>x =[1,2,3]

>>> y =X

>>> 7 = x.append(12)
>>> 7 == None

True

>>> y

[1,2,3,12]
>>>x = x +[9,10]
>>> X
[1,2,3,12,9, 10]
>>>y

1,2, 3, 12]

>>>

Lists: examples

>[10,20,30,40]
>[‘spam’, 20.0, 5, [10,20]]
>cheeses = [Cheddar’, 'Edam’, ‘Gouda’]
>numbers=[17,123]
Traverse a list
>for cheese in cheeses:
print cheese
>for i in range(len(numbers)):
numbers[i] = numbers[i] * 2
> numbers.extend([1,2,3]) # another way to append elements

Lists: examples

Delete element
>t=["a, b, 'c]
>X = t.pop(1)
OR

>del t[1]

OR

>t.remove(' b‘)

Lists: Practice

1. Create CS133_Lists.py using Atom
2. Create String type ‘str’, the value is “CS133”
3. Assign 2017 to a variable ‘year’

4. Create a List type ‘newlList’, and assign variable
‘year’ to it

5. Add ‘str’ to the ‘newlList’

6. Add first two characters of ‘year’ to the end of
‘newlList’

7. Delete first element in ‘newlList’

8. Append [1,2,3] to ‘newlList’, and print out
‘newlList’ and it’s length

Tuples

* Tuples are immutable versions

of lists

* One strange point is the format >>>x =(1,2,3)
to make a tuple with one >>> x[1:]
element: (2, 3)

‘> 1s needed to differentiate iii y=(2,)
y

from the mathematical (2)

expression (2) L —>>z=(127]
>>> 7[0] = 1

>>> x[0] = 1

Dictionaries

» A set of key-value pairs. Like a list, but
indices don’t have to be a sequence of
integers.

 Dictionaries are mutable

>>>d = {1 : 'hello', 'two' : 42, 'blah’ : [1,2,3]}
>>> d

{1: 'hello', 'two': 42, 'blah': [1, 2, 3]}

>>> d['blah']

[1, 2, 3]

Dictionaries

* The function dict() creates a new
dictionary with no items

>>>newDic = dict()

* Use [] to imitialize new items

>>>newDic[‘one’] = ‘Hello’
>>>newDic = {‘one’:’Hello’, ‘two’:’Great’,
‘3°.°>CS133°}

Dictionaries: Add/Modify

* Entries can be changed by assigning to that entry

>>>

{1: 'hello', 'two': 42, 'blah': [1, 2, 3]}
>>> d['two'] = 99

>>>

{1: 'hello', 'two': 99, 'blah': [1, 2, 3]}

* Assigning to a key that does not exist adds an entry

>>>d[7] = 'new entry'
>>>

{1: 'hello', 7: new entry', 'two': 99, 'blah': [1, 2, 3]}

Dictionaries: Deleting Elements

* The del method deletes an element from a dictionary

>>>

{1: 'hello', 2: 'there', 10: 'world'}
>>> del(d[2])

>>>

{1: 'hello', 10: 'world"}

Copying Dictionaries and Lists

* The built-in list
function will copy a
list

* The dictionary has a
method called copy

>>>11 =[1]
>>> 12 = list(11)
>>>11[0] =22
>>> 11

[22]

>>> 12

[1]

>>>d={1:10}
>>>d2 = d.copy()
>>>d[1] =22
>>>

{1: 22}

>>> 42

{1: 10}

Functions

Functions are “magic boxes” that will return values
based on the input. There is an endless number of
functions already created for you. Some examples:

int(’32’) float(22) str(21)

Not all functions are included by default. You need to call
the module that include them. To do that, you need to
type the word import followed by the name of the

module.
import math
You can rename the module by using
import math as m

Function Basics

def max(x,y) : >>> import functionbasics
ifx<y: >>>max(3,5)
return x S
else - >>> max('hello’, 'there')
return y 'there'
>>>max(3, 'hello")
'hello’

functionbasics.py

Functions are first class objects

Can be assigned to a variable
Can be passed as a parameter
Can be returned from a function

Functions are treated like any other variable in Python,
the def statement simply assigns a function to a
variable

Adding new functions

Order is important!!!
Always declare your function before you try to use it

Functions can be of two types:
void
Non-void

Void functions are just like the functions we just
created: They don’t return any value.
def test(n,m,r):
sol=n+m+r
print sol
This type of function usually shows the result internally

Non-void functions

A non-void function returns a value to the caller.

This is very important since the function might just
calculate one value of the “main” calculation

We need to use the word return at the end of the
function

def test(x,n,m):
sol=x+n+m
return sol
sol is a value that now is available to be used later.

Function names are like any variable

>>>x =10
>>> X
. . 10
* Functions are objects >>> def x ()
» The same reference rules ... print 'hello’
hold for them as for other Z>2 X
. <function x at 0x619{f0>
objects 5> x()
hello
>>> x = 'blah'
>>> X
'blah'

Functions as Parameters

def foo(f, a) : >>> from funcasparam import *
return f(a) >>> foo(bar, 3)
9
def bar(x) :
return x * x
funcasparam.py Note that the function foo takes two

parameters and applies the first as a function
with the second as its parameter

Functions Inside Functions

» Since they are like any other object, you can have
functions inside functions

def foo (x,y) : >>> from funcinfunc import *
def bar (z) : >>> £00(2,3)
return z * 2 7
return bar(x) +y

funcinfunc.py

Functions Returning Functions

def foo (x) :
def bar(y) :

return X +y ~: python funcreturnfunc.py

ret}lm bar <function bar at 0x612b0>
main 5

f=foo(3)
print {
print £(2)

funcreturnfunc.py

Parameters: Defaults

 Parameters can be

assigned default values 7 f)iifnt;oﬁ(x =)
* They are overridden if a
parameter is given for >>>100()
them i e foo(10
* The type of the default 10 col10)
doesn’t limit the type of a >>> foo('hello")
parameter hello

Parameters: Named

« (Call by name

>>> def foo (a,b,c) :
* Any positional .. printa, b,c
arguments must
come before named >>>foo(c=10,a=2,b=14)
ones 1n a call 21410
>>>100(3,c=2,b=19)
3192

Anonymous Functions

* A lambda expression >>> f=lambda x,y : x +y
returns a function >>> f(2,3)
object 5

e The body can only be a >>>Ist=['one', lambda x : x * x, 3]
simple expression, not ~ >>> Ist[1](4)
complex statements 16

Practices

1. Create multiple void functions that:

1.
2.

Print the word “Hello” 3 times

Print the word “Hello name!” in which name is replaced by an
input given by the user. Example: If input is Cao, it will print
“Hello Cao!”

Calculate the multiplication of the 3 inputs received by this
function and print the result

2. Create multiple non-void functions that:

1.
2.

Return the word “Hello” 3 times

Return the word “Hello name!” in which name is replaced by an
input given by the user. Example: If input is Cao, it will print
“Hello Cao!”

Calculate the multiplication of the 3 inputs received by this
function and return the result

After class

1. Practice and get familiar with Atom, command prompt
2. Try examples using python, such as Integer, Strings

Additional functions as reference

Higher-Order Functions

map(func,seq) — for all 1, applies func(seq[i]) and returns the
corresponding sequence of the calculated results.

def double(x):

return 2*x

highorder.py

>>> from highorder import *
>>> |st = range(10)

>>> |st

[0,1,2,3,4,5,6,7,8,9]

>>> map(double,lst)
[0,2,4,6,8,10,12,14,16,18]

Higher-Order Functions

filter(boolfunc,seq) — returns a sequence containing all those items in seq
for which boolfunc 1s True.

>>> from highorder import *

def even(x): >>>|st = range(10)
return ((x%2 == 0) >>> [st

[0,1,2,3,4,5,6,7,8,9]
>>> filter(even,lst)

highorder.py [0,2,4,6,8]

Higher-Order Functions

reduce(func,seq) — applies func to the items of seq, from left to right, two-
at-time, to reduce the seq to a single value.

>>> from highorder import *
def plus(x,y): >>> [st=[‘h’,’e’,’’,’]’,’0’]
return (X +y) >>> reduce(plus,st)
‘hello’

highorder.py

