CS 133 - Introduction to Computational and Data Science

Instructor: Renzhi Cao Computer Science Department Pacific Lutheran University Spring 2017

Announcement

- Read book for R control structure and function.
- Final project
- Today we are going to learn R control structure and function.

Selected looping command

R has some functions which implement looping in a compact form to make your life easier.

lapply(): Loop over a list and evaluate a function on each element:
>str(lapply)

```
## example
>mylist <- list(a=1:10, b=20:100, c=30:50)
>lapply(mylist,mean)
```

Exercises

- Create PracticeR3.R and save today's work on that file.
- Create a list **mylist** with three elements: a, b, c, assign values to there three elements (you can decide what values to put).
- Create a function f with one parameter (a list), and evaluate the mean of each elements in the input parameter.

Useful statistics function

Function	Description
mean(x, trim=0, na.rm=FALSE)	mean of object x # trimmed mean, removing any missing values and # 5 percent of highest and lowest scores mx <- mean(x,trim=.05,na.rm=TRUE)
sd(x)	standard deviation of object(x). also look at var(x) for variance and mad(x) for median absolute deviation.
median(x)	median
quantile(x, probs)	<pre>quantiles where x is the numeric vector whose quantiles are desired and probs is a numeric vector with probabilities in [0,1]. # 30th and 84th percentiles of x y <- quantile(x, c(.3,.84))</pre>
range(x)	range
sum(x)	sum
diff(x, lag=1)	lagged differences, with lag indicating which lag to use
min(x)	minimum
max(x)	maximum
scale(x, center=TRUE, scale=TRUE)	column center or standardize a matrix.

Useful statistics function

Function	Description
<pre>seq(from , to, by)</pre>	generate a sequence indices <- seq(1,10,2) #indices is c(1, 3, 5, 7, 9)
rep(x, ntimes)	repeat <i>x n</i> times y <- rep(1:3, 2) # y is c(1, 2, 3, 1, 2, 3)

For final project:

```
Cor(x, y = NULL, use = "everything", method = c("pearson", "kendall", "spearman"))
```

Calculate correlation between two vectors.

Exercises

- Use seq and rep function. First create vector v1 with odd numbers from 0 to 100. And then create vector v2 which repeats the vector v1 three times.
- Calculate the mean, standard deviation, median, sum, min, max and range of v3.
- Create two vectors: (1,2,3,4,5,6), (9,8,7,6,5,4), use Cor function to calculate the correlation between this two vectors. (This is very useful for your final project).

Learning R plotting by example

• R has very powerful plotting function.

Application of R

Variable	Description
Sales	Total unit sales of the grape juice in one week in a store
Price	Average unit price of the grape juice in the week
ad_type	The in-store advertisement type to promote the grape juice.
	ad_type = 0, the theme of the ad is natural production of the juice
	ad_type = 1, the theme of the ad is family health caring
price_apple	Average unit price of the apple juice in the same store in the week
price_cookies	Average unit price of the cookies in the same store in the week

Reading data from files

If you just want to have a look for this data, you can:

> initial <- read.csv("http://cs.plu.edu/~caora/Rdata/grapeJuice.csv",

header = T, nrows=5)

> names(initial) <- c("name1","name2","name3","name4","name5")
> initial\$name1

Simple analysis of the marketing data

- > data <- read.csv("http://cs.plu.edu/~caora/Rdata/grapeJuice.csv", header =
 T)</pre>
- > head(data)
- > summary(data)

Simple analysis of the marketing data

- > par(mfrow = c(1,2)) #set the 1 by 2 layout plot window
- > boxplot(data\$sales,horizontal = TRUE, xlab="sales") # boxplot to check if there are outliers
- > lines(density(data\$sales),lty="dashed",lwd=2.5,col="red")

More analysis

The marketing team wants to find out the ad with better effectiveness for sales between the two types of ads, one is with natural production theme; the other is with family health caring theme.

> #divide the dataset into two sub dataset by ad_type > sales_ad_nature = subset(data,ad_type==0) > sales_ad_family = subset(data,ad_type==1)

> #calculate the mean of sales with different ad_type > mean(sales_ad_nature\$sales) > mean(sales_ad_family\$sales)

> # calculating the t test > t.test(sales_ad_nature\$sales,sales_ad_family\$sales)

More analysis

The marketing team wants to find out the ad with better effectiveness for sales between the two types of ads, one is with natural production theme; the other is with family health caring theme.

> #set the 1 by 2 layout plot window > par(mfrow = c(1,2))

>

> # histogram to explore the data distribution shapes

> hist(sales_ad_nature\$sales,main="",xlab="sales with nature production theme
ad",prob=T)

> lines(density(sales_ad_nature\$sales),lty="dashed",lwd=2.5,col="red")
>

> hist(sales_ad_family\$sales,main="",xlab="sales with family health caring
theme ad",prob=T)

> lines(density(sales_ad_family\$sales),lty="dashed",lwd=2.5,col="red")

Practice more plots

You can try all different kinds of plots on your data, and it's quite easy with the help of R

> # line charts

> plot(sales_ad_family\$sales, sales_ad_nature\$sales) #(type="o", col="blue")

> # Bar plot

- > barplot(sales_ad_family\$sales)
- > # pie charts
- > testData <- c(100,20,300,100,1)

> pie(testData, col=rainbow(length(testData)),labels=c("Mon","Tue","Wed","Thu","Fri"))

More examples:

http://www.harding.edu/fmccown/r/

Final best profit

Assume you want to get higher profit rather than just higher sales quantity, and you find out the relationship between sales and price is: Sales = 772.64 - 51.24*price Assume the cost per each juice is 5, you can now calculate the profit by: $Y = (price - 5) * Sales = -51.24 * price^2 + 1028.84 * price - 3863.2$

```
> f <- function(x) {
    profit = -51.24*x*x + 1028.84 * x - 3863.2
    return(profit)
}</pre>
```

> optimize(f,lower=0,upper=20,maximum=TRUE)

Practice

<u>https://www.cs.plu.edu/~caora/cs133/Code/</u> <u>day24/IntroR.html</u>

Do statistical analysis and draw pictures for your final project.