
CS 133 - Introduction to 
Computational and Data Science 

Instructor: Renzhi Cao 
Computer Science 
Department 
Pacific Lutheran University 
Spring 2017



Announcement

• Read book to page 78. 
• Final project 
• Today we are going to learn R control structure and function.



For loop

In the example of calculating summation of all elements in a vector: 

v <- c(10, 20, 30) 

sumOfV <- v[1] + v[2] + v[3] 

What happens when v has 100 elements?

You need to have a loop to do that! 

For loops are pretty much the only looping construct that you will need 

in R. 

for(<condition>) { 
## repeat doing something until condition is false 
} 



For loop

> for(i in 1:10) 

   { 

        print(i) 

   }
> x <- c("a", "b", "c", "d") 

> for(i in 1:4) { 

+  ## Print out each element of 'x'  

+          print(x[i])

 

+}  



The seq_along() function is commonly used in conjunction with for loops in order to generate an integer 

sequence based on the length of an object (in this case, the object x). 

> ## Generate a sequence based on length of 'x'  

> for(i in seq_along(x)) {  

+          print(x[i])  

+}  

## alternative 

> for(i in seq_along(x)) print(x[i])

For loop



Exercises

• Create a vector y <- c(1,2)

• Use for loop to set i element of y as i. (i from 4 to 20)

• Set the third element of y as 3

• Use seq_along to print each element of y

• Create a R code file: PracticeR2.R, and save today’s code in that file



Nested For loop
The loops can be nested inside each other. 

x <- matrix(1:6, 2, 3) 
for(i in seq_len(nrow(x))) {  
for(j in seq_len(ncol(x))) {  
                print(x[i, j]) 
}  
} 

• seq_len(integer i) —  return [1,2, …, i] 

• seq_along(vector or list?) — return [1,2,…, length of the vector or list]



Hints for your final project: 
If you get all data in data frame d, you can use the following statement to do analysis 
between every feature pairs. 

for(i in seq_len(nrow(d)) { 
for(j in seq_len(ncol(d)) { 
     if(i!=j) 
     { 
            f1 <- d[,i] 
            f2 <- d[,j] 
            # now analysis these two features f1 and f2 …. 
     } 
} 
}

Nested For loop



While loop

While loops begin by testing a condition. If it is true, then they execute the loop body. 

Once the loop body is executed, the condition is tested again, and so forth, until the 

condition is false, after which the loop exits.  

> count <- 0 

> while(count < 10) { 

+          print(count)

+  count <- count + 1 

+}



next and  break

• next is used to skip an iteration of a loop.  

• break is used to exit a loop immediately, regardless of what iteration the loop may 

be on. 

for(i in 1:100) { if(i <= 20) {  
                ## Skip the first 20 iterations 

      next  
} 
       print(i) 
} 

for(i in seq(1,100,1)) { if(i > 20) {  
                ## stop at 20 iterations 

      break  
} 
       print(i) 
} 



Practice

• v <- c(1,2,3,4,5,6) 
for(i in seq_along(v)) { 
if(i >2) { 
break 
} 
print(i) 
}

• v <- c(1,2,3,4,5,6) 
for(i in seq_along(v)) { 
if(i <=2) { 
next 
} 
print(i) 
}



Exercises
• Create two matrix m1 and m2 as follows: 

m1:  1       3                                   m2:     5      7 

        2       4                                              6      8

• Create a 2*2 matrix m3, which is element wise multiplication of 

m1 and m2. Use for loop to calculate the value of m3. The value 

of m3 should be: 

m3:  5        21     

       12       32                                   



Solution

m1<-matrix(1:4,2,2) 

m2<-matrix(5:8,2,2) 

m3<-matrix(nrow=2,ncol=2) 

for(i in seq_len(nrow(m1))){ 

    for(j in seq_len(ncol(m1))){ 

          m3[i,j] = m1[i,j] * m2[i,j] 

    } 

}



What is Function?
• A large program in R can be divided to many subprogram

• The subprogram passes a self contain components and have well define 
purpose.

• The subprogram is called as a function.

• Function - do a task.



Functions

• It will be much easier to divide a big task into several smaller and simpler 
tasks.

• Allowing the code to be called many times

• Easier to read and update

• Easier to debug R program, find and fix errors



Functions
• Writing functions is a core activity of an R programmer. 

• Functions in R are “first class objects”, which means that they can be 
treated much like any other R object.

• Functions can be passed as arguments to other functions. 

• Functions can be nested, so that you can define a function inside of 
another function.



First R function
> f <- function() { 
+ ## This is an empty function  

+} 

> ## Functions have their own class  

> class(f)  

[1] "function"  

> ## Execute this function  

> f()  

NULL  

Not very interesting, but it’s a start.  

Demo how to write a function and save it to a file, use “source” to load the 



Exercises
• Continue to work on PracticeR2.R. Create a function f, add statement to 

the function: print(“Hello World”)

• Use source to load the function file, and call function f.



How the function works
• R program doesn’t execute the statement in function until the function is 

called.

• When the function is used it is referred to as the called function.

• Data is passed from a R program/function to a called function by 
specifying the variables in a argument list.



How the function works

> f <- function(n) { 
+   print(“Hi”) 
+.  print(n)  

+}

What will the program print?

> f (3) What will the program print?

Called function, and data 3 is passed to the function. 

> for(i in 1:3) { 
    f (i) 
}

What will the program print?



How the function works
>f <- function(num){ 
    for(i in seq_len(num)) { 
         print(“Hello, world!\n”) 
    } 
    } 
>f(3)

What will the program print?

>f <- function(n){ 
    for(i in seq_len(n)) { 
         print(“Hello, world!\n”) 
    } 
    } 
>f(3)

What will the program print?



How the function works
• The above function doesn’t return anything.

• It is often useful if a function returns something that might be fed into 
another section of code.

>f <- function(num){ 
    Hello <- “Hello world!\n” 
    for(i in seq_len(num)) { 
         cat(Hello) 
    } 
     Chars <- nchar(Hello) * num 
     Chars 
    } 
>f(3)

This function returns the total number 
 of characters printed to the console

>meaningoflife <- f(3)            # what will print? 
>print(meaningoflife)             # what will print? 
>f()                                          # what happens?



Argument matching
R functions arguments can be matched positionally or by name. Positional 
matching just means that R assigns the first value to the first argument, the 
second value to second argument, etc.

Let’s check the example of rnorm function. 
>str(rnorm)             # you can also use ?rnorm to understand more about rnorm

## Positional match first argument, default for 'na.rm' 
>mydata <- rnorm(100, 2, 1)    ## Generate some data

>str(sd) 
>sd(mydata) 
>sd(x=mydata) 
>sd(na.rm=FALSE, x = mydata)     ## specified both arguments by name



Exercises
• Create a function f with two parameters p1 and p2, return the summation 

of p1 and p2. Test your function by calling:  
>sum <-f(2,3) 
>print(sum) 

• Write a function f2 with one parameter m, display values from 1 to m. 
Test your function by calling: 

>f2(50) 

• Write a function f3 with one parameter n, display a n*n square of *. Test 
your function by calling: 

>f3(4) 
# you should get: 
* * * * 
* * * * 
* * * * 
* * * *



Exercises
• For a function f10, write a for loop to display the values from 1 to 25 

along with each value squared. The output should look like this:  
1 squared is 1 
2 squared is 4 
3 squared is 9

• For a function f11, write a for loop to print the odd numbers from 1 to 99 
(inclusive). Hint: i%2 == 0 means i is odd number, so you may use if 
statement also.

• For a function f12, Write a for loop to display the multiples of 3 from 99 
down to 3.




