
CS 133 - Introduction to
Computational and Data Science

Instructor: Renzhi Cao
Computer Science
Department
Pacific Lutheran University
Spring 2017

Homework

• Read book to page 25.
• Final project. Check Sakai, read papers! Due on

May 18 and 24!
• Project 2 is due today!

Simple practices

1. Create a vector v, and add two elements: “hello”, 133

2. Print the second element of v

3. Convert the second element of v to numeric number

4. Setup your working directory to a new 'work' folder in your desktop

5. Create a vector numbers from 1 to 6 and find out its class type

6. Create a vector containing following mixed elements {1, 'a', 2, 'b'} and
find out its class. Then create a list with the same elements.

7. Get the first two elements from above vector

8. Get the first and third elements from above vector

Matrices

Matrices are vectors with a dimension attribute. The dimension attribute is
itself an integer vector of length 2 (number of rows, number of columns)

> m <- matrix(nrow = 2, ncol = 3)

>m

[,1] [,2] [,3] [1,] NA NA NA [2,] NA NA NA

> dim(m)
[1] 2 3
> attributes(m)
$dim
[1] 2 3

Matrices

Matrices are constructed column-wise, so entries can be thought of starting
in the “upper left” corner and running down the columns.

> m <- matrix(1:6, nrow = 2, ncol = 3)

>m

 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Matrices

Matrices can also be created directly from vectors by adding a dimension
attribute.

R Nuts and Bolts 17

> m <- 1:10

>m

[1] 1 2 3 4 5 6 7 8 9 10

> dim(m) <- c(2, 5)  
>m

>m[1,2]

Matrices

Matrices can be created by column-binding or row-binding with the cbind()
and rbind() functions.

> x <- 1:3
> y <- 10:12
> cbind(x, y)

> rbind(x, y)

Simple practices

1. Create the following matrices and print it out:

 1 3 5

 7 9 11

 13 15 17

2. Create the following matrices and print it out:

 1 41 455 474

 2 239 121 357

 61 65 178 533

Factors

> x <- factor(c("yes", "yes", "no", "yes", "no"))

>x

>table(x)

>## See the underlying representation of factor

> unclass(x)

Factors are used to represent categorical data (unordered or ordered), like
integer vector where each integer has a label.

• Self-describing. “Male” and “Female” is better value compared to 1 and 2.

• Use factor() function to create a factor.

Factors

The order of the levels of a factor can be set using the levels argument to
factor(). This can be important in linear modelling because the first level is
used as the baseline level.

> x <- factor(c("yes", "yes", "no", "yes", "no"))

> x ## Levels are put in alphabetical order  
[1] yes yes no yes no  
Levels: no yes

> x <- factor(c("yes", "yes", "no", "yes", "no"), levels <- c("yes", "no"))  
> x 
[1] yes yes no yes no

Levels: yes no

Missing values

Missing values are denoted by NA or NaN for undefined mathematical
operations. (NaN means not a number, like 0/0. NA means missing values)

• is.na() is used to test objects if they are NA  
• is.nan() is used to test for NaN 
• NA values have a class also, so there are integer NA, character NA, etc.

• A NaN is also NA but the converse is not true

Missing values

> ## Create a vector with NAs in it  
> x <- c(1, 2, NA, 10, 3)  
> ## Return a logical vector indicating which elements are NA

> is.na(x)

> is.nan(x)

> ## Now create a vector with both NA and NaN values

> x <- c(1, 2, NaN, NA, 4)  
> is.na(x)

> is.nan(x)

Simple practices

1. Create a vector with the values of 1, 3, NA, 5, NaN

2. Test NA

3. Test NaN

Data Frames

Data frames are used to store tabular data in R.

Data frames are represented as a special type of list where every element of the
list has to have the same length.

Each element of the list can be thought of as a column and the length of each
element of the list is the number of rows.

What is this looks like and what is the difference?

Unlike matrices, data frames can store different classes of objects in each
column. Matrices must have every element be the same class (e.g. all integers or
all numeric).

Data frames have a special attribute called row.names which indicate
information about each row of the data frame.

Data Frames

Data frames are usually created by reading in a dataset using the read.table() or
read.csv(). Also, be created explicitly with the data.frame() function

Data frames can be converted to a matrix by calling data.matrix().

> x <- data.frame(foo = 1:4, bar = c(T, T, F, F))

>nrow(x)

>ncol(x)

Simple practices

1. Create a data frame with the following values:

ID Score CS133

1 89 TRUE

2 30 FALSE

3 0 FALSE

4 99 TRUE

2. Convert the data frame a matrix m, and print the score of ID 3.

Names

R objects can have names, which is very useful for writing readable code
and self-describing objects.

Lists can also have names, which is often very useful.

> x <- list("Los Angeles" = 1, Boston = 2, London = 3)

> x

> x <- 1:3  
> names(x)  

> names(x) <- c("New York", "Seattle", "Los Angeles")

Names

Matrices can have both column and row names.

> m <- matrix(1:4, nrow = 2, ncol = 2)  
> dimnames(m) <- list(c("a", "b"), c("c", "d"))

>m

Column names and row names can be set separately using the colnames() and
rownames() functions.

> colnames(m) <- c("h", "f")

> rownames(m) <- c("x", "z")

Summary

There are a variety of different builtin-data types in R. In this chapter we
have reviewed the following

• atomic classes: numeric, logical, character, integer, complex • vectors,
lists  
• factors  
• missing values

• data frames and matrices

Exercises

1. Create a matrix m with 2 rows and 2 columns

2. Assign 1 to element at row 1, column 1

3. Assign 30 to element at row 2, column 2

4. Assign Inf to element at row 2, column 1

5. print m

6. Convert m to a character vector n

7. Guess what will be n[!is.na(n)]?

8. Print the names of vector n

9. Set names of vector n

Learn more operations on R object.

Next time we are going to learn how to get data In and
Out of R. Please Read the book.

Subsetting of R objects

There are three operators that can be used to extract subsets of R objects.

• The [operator always returns an object of the same class as the original. It can be
used to select multiple elements of an object  

• The [[operator is used to extract elements of a list or a data frame. It can only be used
to extract a single element and the class of the returned object will not necessarily be
a list or data frame.  

• The $operator is used to extract elements of a list or data frame by literal name. Its
semantics are similar to that of [[.  

Subsetting a vector

> x <- c("a", "b", "c", "c", "d", "a")

> x[1] ## Extract the first element

> x[2] ## Extract the second element

The [operator can be used to extract multiple elements of a vector by passing
the operator an integer sequence.

> x[1:4]
> x[c(1, 3, 4)]

Subsetting a vector

We can also pass a logical sequence to the [operator to extract elements of a vector that
satisfy a given condition.  

> u <- x > "a" 
> u 
> x[u]

> x[x > "a"]

Subsetting a matrix
Matrices can be subsetted in the usual way with (i,j) type indices. Here, we create simple
2*3 matrix with the matrix function.

> x <- matrix(1:6, 2, 3)

>x

We can access the $(1, 2)$ or the $(2, 1)$ element of this matrix using the appropriate
indices.

> x[1, 2]
> x[2, 1]

> x[1,] ## Extract the first row

> x[, 2] ## Extract the second column

Subsetting a matrix
Dropping matrix dimensions
By default, when a single element of a matrix is retrieved, it is returned as a vector of
length 1 rather than a 1*1 matrix. Often, this is exactly what we want, but this behavior can
be turned off by setting drop = FALSE.

> x <- matrix(1:6, 2, 3)

> x[1, 2]

> x[1, 2, drop = FALSE]

> x[1,]

> x[1, , drop = FALSE]

Subsetting lists

Lists in R can be subsetted using all three of the operators mentioned above,
and all three are used for different purposes.

> x <- list(foo = 1:4, bar = 0.6)

>x 

The [[operator can be used to extract single elements from a list. Here we
extract the first element of the list.

> x[[1]]

Subsetting lists

The [[operator can also use named indices so that you don’t have
to remember the exact ordering of every element of the list. You
can also use the $ operator to extract elements by name.

> x[["bar"]]
> x$bar

Subsetting lists
One thing that differentiates the [[operator from the $ is that the [[operator can be used with computed
indices. The $ operator can only be used with literal names.

> x <- list(foo = 1:4, bar = 0.6, baz = “hello")

> name <- "foo"  
> 
> ## computed index for "foo"

> x[[name]]  

>## the element “name” doesn’t exists

> x$name

> ## element "foo" does exist

> x$foo

Subsetting Nested Elements of a List

The [[operator can take an integer sequence if you want to extract a nested element of a
list.

> x <- list(a = list(10, 12, 14), b = c(3.14, 2.81))

> 
> ## Get the 3rd element of the 1st element  
> x[[c(1, 3)]]

> ## Same as above 
> x[[1]][[3]]  

> ## 1st element of the 2nd element

> x[[c(2, 1)]]  

Partial matching

Partial matching of names is allowed with [[and $. This is often
very useful during interactive work if the object you’re working
with has very long element names.

> x <- list(aardvark = 1:5)
> x$a

> x[[“a"]]

> x[["a", exact = FALSE]]

Removing NA values

A common task in data analysis is removing missing values
(NAs).

> x <- c(1, 2, NA, 4, NA, 5)  
> bad <- is.na(x)  
> print(bad)  

> x[!bad]

Removing NA values

What if there are multiple R objects and you want to take the subset with no missing
values in any of those objects?

> x <- c(1, 2, NA, 4, NA, 5)  
> y <- c("a", "b", NA, "d", NA, "f")  

> good <- complete.cases(x, y)  

> good

> x[good]  

> y[good]  

Removing NA values

You can use complete.cases on data frames too.

> head(airquality)

> good <- complete.cases(airquality)

> head(airquality[good,])

Vectorized operations

Many operations in R are vectorized, meaning that operations occur in parallel in
certain R objects. This allows you to write code that is efficient, concise, and
easier to read than in non-vectorized languages.

> x <- 1:4

> y <- 6:9
> z <- x + y

>z

> x >= 2

>x-y

>x*y

Vectorized operations

Matrix operations are also vectorized, making for nicly compact
notation.

> x <- matrix(1:4, 2, 2)  
> y <- matrix(rep(10, 4), 2, 2)

> ## element-wise multiplication
>x*y

> ## element-wise division

>x/y

> ## true matrix multiplication

> x %*% y

Exercises

1. Create a vector v with the following elements: 3, 5 , 7 , 9 , 10 , 133

2. Print second, third, and fifth element

3. Print second, third, and fifth element

4. Get all elements which is larger than 8

5. Create a 2*3 matrix m based on the previous vector v.

6. Print first row of matrix m

7. Print second column of matrix m

8. Create a list l with the same elements to v

9. Print the second element of l

10. Create vector v2 with: 3, NA, 4, 5

11. Removing missing value in v3

12. Practice on course website

