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o Introduction

+What Is protein?

<+ Food?

< Protein are composed of small units (amino acid)
and can fold into 3D structure.
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Introduction

+What i1s CASP ?

<« CASP Is Critical Assessment of Techniques of
Protein Structure Prediction.

+What Is protein quality assessment?

< Evaluating the quality of protein structure prediction
without knowing the native structure.

Model pool L
i i
&

% > How good is
| this model?
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<« A simple and efficient statistical potential
for scoring ensembles of protein
structures

< Pilar Cossio, Daniele Granata, Alessandro Laio, Flavio Seno
& Antonio Trovato.

« Basic idea: develop a new statistical knowledge
based potential (KBP) and apply it to protein quality
assessment.

«+ KBPs are energy functions derived from databases
of known protein conformations.




Paper 1 - method

+ Method:
«+ The BACH energy function:

Egach = pEpatr + EsoLy

The pairwise statistical potential Ep, g IS based on classifying
all residue pairs within a protein structure in five different
structural classes.

The solvation statistical potential Eg,\, IS based on
classifying all residues in two different environmental classes.

P is a parameter to adjust the weight. b ]
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% Epar. (Modified DSSP)
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Class 1 : two residues form a a—helical bridge

Class 2 : two residues form an anti-parallel 3-bridge

Class 3 : two residues form a parallel B-bridge

Class 4 : two residues in contact(4.5 A) through side chain
Class 5 : other cases

The pairwise statistical potential Ep, g requires five distinct
symmetric matrices €_,*, where a and b vary among the 20
amino acid types, x is the class, for overall 1050 parameters.

_ Xij
Eparr = E €a;a; Wi

i<j R
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<+ n, " IS the total number of residue pairs of type a and b
found in the structural class x within the dataset.
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% EgoLy- (SURF tool of VMD graphic software)

< Class 1 : buried

+ Class 2 : solvent exposed

+ The single residue statistical potential E,,, requires two
separate parameter sets 1,°, for overall 40 parameters. e=b
or s is the environmental class of residue at position I.
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Paper 1 - method

+ m,%, IS the total number of residues of type a found in the
environment class e within the dataset.
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Paper 1 - method

< An alternative implementation of BACH was derived using a
reduced amino acid alphabet consisting of 9 classes:

< small hydrophobic (ALA,VAL,ILE,LEU,MET),
+ large hydrophobic (TYR,TRP,PHE)

<« small polar (SER,THR)

« large polar (ASN,GLN,HIS)

< positively charged (ARG,LYS)

< negatively charged (ASP,GLU)

« GLY, PRO, CYS separately on their own
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Paper 1 - method

<« The parameter p is chosen in such a way that the energy per
residue of the two terms has approximately the same
standard deviation over the dataset. This criterion gives p =
0.6.

<~ PDB data_set IS the TOP500 database with resolution better
than 1.8 A by X-ray crystallography (no NMR).

« 33 CASP decoy sets come from CASP8-9. The structures Iin
each decoy set were used if they had the same length and
sequence as the native structure, and had all the side-chain
and backbone atoms.

<« MD simulations were performed using the GROMACS 4.5.3
package. '
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Paper 1 - result

« Comparison with other knowledge-based

potentials.

«+ We compare the performance of BACH with QMEAN,
ROSETTA and RF_CB_ SRS _OD from two aspects:

<« 1. Normalized rank, defined as the rank of the native
structure divided by the total number of structures in the
decoy set.

« 2. Z-score, defined as the distance, measured in standard
deviations, of the energy of the native state from the mean
energy of the set.




= ().5 1] ' 1] I ] I
- 8 Mizzou . A) _

University of Missouri B BA C H ® i
s 04— s QMEANG =~
s | +—+ RF_CB_SRS_OD |
o &—4a ROSETTA
L
s
‘—é’ 0.2
=
Z.

S

00 10 20 30
CASP 8 -9 Decoy set




0.25.,.,.,.,.,.
8 Mizzou A)

University of Missouri o—e BACH
02 =—a QMEANG6
¢—¢ BACH "50 structure”

0.15

0.1

-t

=

m 0.05

b ™

L

N

o:

g 1] I 1] ] 1 I 1 l 1] I 1 [ 1]

= 05— B) gl

e |

Z I 5
04— —

| ¢—¢ BACH with 9 classes -

10 15 20 25 30
CASP 8 -9 Decoy set

—
-
h




e—e BACH

=—a QMEANG
+—+ RF CB_SRS_OD
4—a ROSETTA

Q 0.6 —-
T 04 —
0.2 —
Decoys CASP8/9 _
|
0% 10 20 30
B) 5 [ l 1 xl | [ 1 I 1
4~ | O BACH D i
x QMEANG6 |
O I O 0O O
S3- O O Q .
S . & 6
CQID) [ X d(O j
1 2 O o % o *o % -
N | 4 %0 & g
X X g
K o O o x X z %I
L X 3 11
0 l 1 0 1 l | ¥ 1 %
0.2 0.4 0.6 0.8




g Paper 1 - result

+ AyGDT is the GDT score of the best model of N lowest
energy structures against best model in the whole dataset.
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result
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Paper 1 - result

» Discussion:

» This paper developed a knowledge based potential, named
BACH, by splitting the residue-residue contact in those
present within a—helices or f—sheets, and the evaluation of
the propensities of single-residue to be buried or exposed.

» Compared with other state-of-art methods, this one has
fewer parameter and perform better in discriminating the
native structure, and it's very robust.

» Thermal fluctuation is important to rank two structures.
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<« A method for evaluating the structural
guality of protein models by using higher-

order ¢—y pairs scoring
+ Gregory E. Sims and Sung-Hou Kim.

« Basic idea: evaluating the quality of protein model

®(phi, involving backbone
atoms C’-N-Ca-C’)

Y(psi, involving backbone
atoms N-Ca-C’-N )
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Fig. 1. Ramachandran ¢—y plot. Regions of the ¢d— space are divided into
"core’’ favorable regions (green), allowed regions (blue), unfavored regions [
(tan), and disallowed regions (white). Overall, the plot shows four conforma- &
tional clusters with their centers around the (&,4) values of (—100, —30),

(=100, 120), (60, 0), and (60, 180) degrees.



_
University of Missouri

Paper 2 - method

+ Problems about using ramachandran plot for
protein quality assessment:

< A predicted structure may fit the ramachandran plot
very well at single residue level, however, it may
composed of very unnatural building blocks
consisting of multiple residues.
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« In this paper, the authors investigate the angular
conformation spaces of longer peptide fragment

<« 1-10 @—y pairs (3-12 residues).
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Paper 2 - method

< The observation suggests:

< (1). Protein structure might best be represented as
blocks of fragments with designated accessible ¢—
W values

< (2). It maybe possible to construct and delineate a
conformational space into a finite number of
conformational clusters for a given number of ¢—y
pairs.
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<+ The (p—y), pairs are mapped to lower dimension
using multidimensional scaling(MDS) method.

X Equwalence of (p—Lp map and 2D I\/IDS map
"S} L
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Paper 2 - method

+ 3D map of conformational space for (¢—y), and
representative conformations.

= F
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« This paper present a method HOPP score, for
defining the conformational space of multiple ¢—y
pairs and testing the fit of queried protein structural
models to each of those conformational spaces.

Table 1. HOPPscore allowed regions

Category Frequency, Symbol Score
Favored f>=x+ 050 F +2
Allowed X+050c>f>=x A +1
Unfavored x>f U +0.5
Disallowed f=0 D -4

X, average frequency; o, SD.
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«+ The HOPPscore database is constructed by all
native X-ray structures divided into bins by
resolution 0.2 A intervals from 0.5 to 3.0 A.

<+ The CASP model database Is created from the
CASP website.
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Paper 2 - result

<+~ HOPPscore values correlate with resolution.
(gridsize is 12 ° )
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+ Best grid size for binning conformational space.
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Paper 2 - result
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< Discussion:

< This paper developed a tool for protein structure analysis by
comparing the higher-order ¢—y pairs of the experiment and
predictions.
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<« Evaluating the absolute quality of a single
protein model using structural features
and support vector machines

«+ Zheng Wang, Allison N. Tegge, and Jianlin Cheng

+ Basic idea: apply machine learning method to
evaluate the protein quality.
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«+ CASP 6 protein models predicted by Sparks, Robetta and
FOLDpro are used as training dataset (64 cross-fold
validation are used), CASP 7 protein models are used as
testing dataset.

< Support vector machine are used to train a model for
predicting the model quality.
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» 1D and 2D structural features include:
» Secondary structure (alpha helix, beta sheet, and loop)

» Relative solvent accessibility (exposed or buried at 25%
threshold)

» Contact probability map
< Probability map of beta-strand residue pairs




» 1D Features:

» The predicted secondary structure (SS) and relative solvent
accessibility (RSA) of each residue are compared with those
of the model parsed by DSSP.

< The fraction of identical matches for both SS and RSA.

» Four similarity score by cosine, correlation, Gausian kernal,
and dot product of the two composition vectors.




» 2D Features:

* Residue pairs in the model which have sequence separation
>= 6, and in contact at a threshold, we use the predicted
average contact probability for them as one feature.

<« Similarly, for beta-strand pairing probability.

» The contact order (the sum of sequence separation of
contacts) and contact number (the number of contacts) for
each residue from a 3D model and the predicted contact
map are used to calculate the pairwise similarity scores
using cosine and correlation functions.
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< Support vector machine (SVM-light) are used to train a
model for predicting the model quality.

feature
map

complex in low dimensions simple in higher dimensions




< Predicted GDT-TS score versus real GDT-TS score on
CASP6 models using cross-validation.
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Correlation per Target
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< Predicted GDT-TS score versus true GDT-TS score of easy
target TO308 and hard target T0O319.

Predicted GDT-TS score
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« Correlation versus loss and RMSE of 95 CASP7 targets.
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Root mean squared error (RMSE)

«+ RMSE versus loss of 95 CASP7 targets.
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The Results of Three Model Evaluation Methods on CASP7 Models

Corr Corr Loss Loss QOver
Method Ave corr (TM) (FM) Loss (TM) (FM) corr
ModelEvaluator 0.76 082 050 570 548 bb3 0.87
Circle-QA 0.75 0.79 057 6.07 h83 709 0.70
ProQ 0.72 D76 053 904 912 869 0.78
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< Conclusion:

« This paper described a quality evaluation model that can
predict absolute model quality of a single model. The
machine learning method is used to train the model for the
prediction.
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DIScussion
<+ Discussion:

<« 1. A new statistical knowledge based potential, and apply
molecular dynamics for model quality assessment.

< 2. Apply higher-order ¢—y pairs scoring for quality
assessment.
« 3. Support vector machine for model quality assessment.

< Limitations:

<+ 1. MD takes time. Pearson correlation.
< 2. Parameters to choose.
« 3. Accuracy and ability to choose the best model.




Research plan

+ Research plan:

+ Find good features for machine learning method.

< Applying machine learning method (Such as neural network,
deep network, support vector machine) to find the patterns

for quality assessment.
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