# **Protein quality assessment**

- Speaker: Advisor: Major:
- Renzhi Cao Dr. Jianlin Cheng Computer Science

May 17<sup>th</sup>, 2013



### Outline

- Introduction
- Paper1
- Paper2
- Paper3
- Discussion and research plan
- Acknowledgement and references





## Outline

- Introduction
- Paper1
- Paper2
- Paper3
- Discussion and research plan
- Acknowledgement and references





#### Introduction

#### What is protein?

Food?



 Protein are composed of small units (amino acid) and can fold into 3D structure.









### Introduction

### What is CASP ?

 CASP is Critical Assessment of Techniques of Protein Structure Prediction.

## What is protein quality assessment?

Evaluating the quality of protein structure prediction without knowing the native structure.





### Outline

- Introduction
- Paper1
- Paper2
- Paper3
- Discussion and research plan
- Acknowledgement and references





 A simple and efficient statistical potential for scoring ensembles of protein structures

- Pilar Cossio, Daniele Granata, Alessandro Laio, Flavio Seno & Antonio Trovato.
- Basic idea: develop a new statistical knowledge based potential (KBP) and apply it to protein quality assessment.
- KBPs are energy functions derived from databases of known protein conformations.



#### Method:

Mizzou

#### The BACH energy function:

$$E_{\text{Bach}} = pE_{\text{PAIR}} + E_{\text{SOLV}}$$

The pairwise statistical potential  $E_{PAIR}$  is based on classifying all residue pairs within a protein structure in five different structural classes.

The solvation statistical potential  $E_{SOLV}$  is based on classifying all residues in two different environmental classes.

P is a parameter to adjust the weight.





- ♦ E<sub>PAIR</sub>. (Modified DSSP)
- Class 1 : two residues form a α–helical bridge
- Class 2 : two residues form an anti-parallel β-bridge
- Class 3 : two residues form a parallel β-bridge
- Class 4 : two residues in contact(4.5 Å) through side chain
- Class 5 : other cases

Mizzou

• The pairwise statistical potential  $E_{PAIR}$  requires five distinct symmetric matrices  $E_{ab}^{x}$ , where a and b vary among the 20 amino acid types, x is the class, for overall 1050 parameters.

$$E_{\text{PAIR}} = \sum_{i < j} \epsilon_{a_i a_j}^{x_{ij}}$$





Mizzou

•  $n_{ab}^{x}$  is the total number of residue pairs of type a and b found in the structural class x within the dataset.





- E<sub>SOLV</sub>. (SURF tool of VMD graphic software)
- Class 1 : buried
- Class 2 : solvent exposed
- ✤ The single residue statistical potential E<sub>SOLV</sub> requires two separate parameter sets  $\lambda_a^e$ , for overall 40 parameters. e<sub>i</sub>=b or s is the environmental class of residue at position i.

$$\mathbf{E}_{\mathrm{SOLV}} = \sum_{i} \lambda_{a_i}^{e_i}$$

Varshney, and etc. IEEE computer graphycs and application. 1994





•  $m_a^{e}$ , is the total number of residues of type a found in the environment class e within the dataset.



- An alternative implementation of BACH was derived using a reduced amino acid alphabet consisting of 9 classes:
- small hydrophobic (ALA,VAL,ILE,LEU,MET),
- Iarge hydrophobic (TYR,TRP,PHE)
- small polar (SER,THR)

- Iarge polar (ASN,GLN,HIS)
- positively charged (ARG,LYS)
- negatively charged (ASP,GLU)
- GLY, PRO, CYS separately on their own





1/

The parameter p is chosen in such a way that the energy per residue of the two terms has approximately the same standard deviation over the dataset. This criterion gives p = 0.6.

Mizzou

- PDB dataset is the TOP500 database with resolution better than 1.8 Ä by X-ray crystallography (no NMR).
- 33 CASP decoy sets come from CASP8-9. The structures in each decoy set were used if they had the same length and sequence as the native structure, and had all the side-chain and backbone atoms.
- MD simulations were performed using the GROMACS 4.5.3 package.

Lovell, et al. Proteins, 2003. Lindahl, et al, J. Mol. Mod. 2001





Comparison with other knowledge-based potentials.

We compare the performance of BACH with QMEAN, ROSETTA and RF\_CB\_SRS\_OD from two aspects:

- 1. Normalized rank, defined as the rank of the native structure divided by the total number of structures in the decoy set.
- Z-score, defined as the distance, measured in standard deviations, of the energy of the native state from the mean energy of the set.





17







 Δ<sub>N</sub>GDT is the GDT score of the best model of N lowest energy structures against best model in the whole dataset.







Mizzou



#### Discussion:

- This paper developed a knowledge based potential, named BACH, by splitting the residue-residue contact in those present within α-helices or β-sheets, and the evaluation of the propensities of single-residue to be buried or exposed.
- Compared with other state-of-art methods, this one has fewer parameter and perform better in discriminating the native structure, and it's very robust.
- Thermal fluctuation is important to rank two structures.





### Outline

- Introduction
- Paper1
- Paper2
- Paper3
- Discussion and research plan
- Acknowledgement and references



 A method for evaluating the structural quality of protein models by using higherorder φ–ψ pairs scoring

Gregory E. Sims and Sung-Hou Kim.

Mizzou

 Basic idea: evaluating the quality of protein model by higher-order φ–ψ angles.



 Φ(phi, involving backbone atoms C'-N-Ca-C')
 Ψ(psi, involving backbone atoms N-Ca-C'-N)





**Fig. 1.** Ramachandran  $\phi - \psi$  plot. Regions of the  $\phi - \psi$  space are divided into "core" favorable regions (green), allowed regions (blue), unfavored regions (tan), and disallowed regions (white). Overall, the plot shows four conformational clusters with their centers around the  $(\phi, \psi)$  values of (-100, -30), (-100, 120), (60, 0), and (60, 180) degrees.



Problems about using ramachandran plot for protein quality assessment:

Mizzou

A predicted structure may fit the ramachandran plot very well at single residue level, however, it may composed of very unnatural building blocks consisting of multiple residues.





- In this paper, the authors investigate the angular conformation spaces of longer peptide fragment
- 1-10  $\varphi$ – $\psi$  pairs (3-12 residues).



The observation suggests:

Mizzou

- (1). Protein structure might best be represented as blocks of fragments with designated accessible φ– ψ values
- (2). It maybe possible to construct and delineate a conformational space into a finite number of conformational clusters for a given number of φ–ψ pairs.



- The (φ–ψ)<sub>n</sub> pairs are mapped to lower dimension using multidimensional scaling(MDS) method.
- Equivalence of  $\varphi$ - $\psi$  map and 2D MDS map.

Mizzou



Sims et al, *P.N.A.S.* 2005

• 3D map of conformational space for  $(\phi-\psi)_3$  and representative conformations.

Mizzou



 This paper present a method HOPP score, for defining the conformational space of multiple φ–ψ pairs and testing the fit of queried protein structural models to each of those conformational spaces.

#### Table 1. HOPPscore allowed regions

Mizzou

| Category   | Frequency, <i>f</i>       | Symbol | Score |  |
|------------|---------------------------|--------|-------|--|
| Favored    | $f > = x + 0.5\sigma$     | F      | +2    |  |
| Allowed    | $x + 0.5\sigma > f > = x$ | А      | +1    |  |
| Unfavored  | x > f                     | U      | +0.5  |  |
| Disallowed | f = 0                     | D      | -4    |  |

*x*, average frequency;  $\sigma$ , SD.



The HOPPscore database is constructed by all native X-ray structures divided into bins by resolution 0.2 Å intervals from 0.5 to 3.0 Å.

B Mizzou

The CASP model database is created from the CASP website.



21

# HOPPscore values correlate with resolution. (gridsize is 12°)



#### Best grid size for binning conformational space.









- Discussion:
- This paper developed a tool for protein structure analysis by comparing the higher-order φ–ψ pairs of the experiment and predictions.



### Outline

- Introduction
- Paper1
- Paper2
- Paper3
- Discussion and research plan
- Acknowledgement and references



 Evaluating the absolute quality of a single protein model using structural features and support vector machines

Zheng Wang, Allison N. Tegge, and Jianlin Cheng

Mizzou

 Basic idea: apply machine learning method to evaluate the protein quality.





- CASP 6 protein models predicted by Sparks, Robetta and FOLDpro are used as training dataset (64 cross-fold validation are used), CASP 7 protein models are used as testing dataset.
- Support vector machine are used to train a model for predicting the model quality.





- ID and 2D structural features include:
- Secondary structure (alpha helix, beta sheet, and loop)
- Relative solvent accessibility (exposed or buried at 25% threshold)
- Contact probability map
- Probability map of beta-strand residue pairs





#### 1D Features:

- The predicted secondary structure (SS) and relative solvent accessibility (RSA) of each residue are compared with those of the model parsed by DSSP.
- The fraction of identical matches for both SS and RSA.
- Four similarity score by cosine, correlation, Gausian kernal, and dot product of the two composition vectors.





#### 2D Features:

- Residue pairs in the model which have sequence separation
  >= 6, and in contact at a threshold, we use the predicted average contact probability for them as one feature.
- Similarly, for beta-strand pairing probability.
- The contact order (the sum of sequence separation of contacts) and contact number (the number of contacts) for each residue from a 3D model and the predicted contact map are used to calculate the pairwise similarity scores using cosine and correlation functions.





 Support vector machine (SVM-light) are used to train a model for predicting the model quality.





SVM-light : http://svmlight.joachims.org



 Predicted GDT-TS score versus real GDT-TS score on CASP6 models using cross-validation.







Correlation against median true GDT-TS score per target.





 Predicted GDT-TS score versus true GDT-TS score of easy target T0308 and hard target T0319.



![](_page_48_Picture_0.jpeg)

#### Correlation versus loss and RMSE of 95 CASP7 targets.

![](_page_48_Figure_3.jpeg)

![](_page_48_Picture_4.jpeg)

![](_page_49_Picture_0.jpeg)

#### RMSE versus loss of 95 CASP7 targets.

![](_page_49_Figure_3.jpeg)

![](_page_50_Figure_0.jpeg)

![](_page_51_Picture_0.jpeg)

![](_page_51_Picture_1.jpeg)

#### The Results of Three Model Evaluation Methods on CASP7 Models

| Method         | Ave corr | Corr<br>(TM) | Corr<br>(FM) | Loss | Loss<br>(TM) | Loss<br>(FM) | Over<br>corr |
|----------------|----------|--------------|--------------|------|--------------|--------------|--------------|
| ModelEvaluator | 0.76     | 0.82         | 0.50         | 5.70 | 5.48         | 6.63         | 0.87         |
| Circle-QA      | 0.75     | 0.79         | 0.57         | 6.07 | 5.83         | 7.09         | 0.70         |
| ProQ           | 0.72     | 0.76         | 0.53         | 9.04 | 9.12         | 8.69         | 0.78         |

![](_page_51_Picture_4.jpeg)

![](_page_52_Picture_0.jpeg)

Conclusion:

B Mizzou

This paper described a quality evaluation model that can predict absolute model quality of a single model. The machine learning method is used to train the model for the prediction.

![](_page_53_Picture_0.jpeg)

### Outline

- Introduction
- Paper1
- Paper2
- Paper3
- Discussion and research plan
- Acknowledgement and references

![](_page_53_Picture_8.jpeg)

![](_page_54_Picture_0.jpeg)

#### Discussion:

- 1. A new statistical knowledge based potential, and apply molecular dynamics for model quality assessment.
- Apply higher-order φ–ψ pairs scoring for quality assessment.
- ✤ 3. Support vector machine for model quality assessment.

#### Limitations:

- 1. MD takes time. Pearson correlation.
- 2. Parameters to choose.
- ✤ 3. Accuracy and ability to choose the best model.

![](_page_54_Picture_9.jpeg)

![](_page_55_Picture_0.jpeg)

## Research plan

#### Research plan:

- Find good features for machine learning method.
- Applying machine learning method (Such as neural network, deep network, support vector machine) to find the patterns for quality assessment.

![](_page_55_Picture_5.jpeg)

![](_page_56_Picture_0.jpeg)

# Acknowledgement

- Dr. Jianlin Cheng
- Dr. Ye Duan
- Dr. William L. Harrison
- All members in Bioinformatics, Data Mining and Machine Learning Laboratory (BDML)
- Google images

![](_page_56_Picture_7.jpeg)

#### References

 Tanaka, S. & Scheraga, H.A. Mediumand long range interaction parameters between amino acids for predicting three dimensional structures of proteins. Macromolecules. 1976

- Lazaridis, T.&Kooperberg, C., Huang, E.&Baker, D. Effective energy functions for protein structure predictions. Curr. Opin, Struct, Biol, 1996
- Simons, K.T. et al. Improved recognition of native like protein structures using a combination of sequence dependent and sequence independent features of proteins. 1999.
- Rykunov, D.&Fiser, A. New statistical potential for quality assessment of protein models and a survey of energy functions. BMC bioinformatics, 2010.
- Tsai, J.,Bonneau, R.,Morozov, A. V.,Kuhlman,R.,Rohl,C.A.&Baker,D.An. Improved protein decoy set for testing energy functions for protein structure prediction. Proteins, 2003.
- Benkert, P., Tosatto,S.C.E&Schomburg,D.QMEAN: A comprehensive scoring function for model quality assessment. Protein, 2008

![](_page_58_Picture_0.jpeg)

- Benkert, P., Kunzli, M. & Schwede, T. QMEAN server for protein quality estimation. Nucleic Acids Res, 2009.
- Kabsch,W.&Sander,C.Dictionary of protein secondary structure pattern recognition of hydrogen bonded and geometrical features. Biopolymers, 1983.
- Varshney, A., Brooks, F.P. & Wright, W.V. Computing smooth molecular surfaces. IEEE computer Graphycs and applications. 1994.
- Humphrey, W., Dalke, A&Schulten, K.VMD. Visual molecular dynamics. Jour.Mol, Gra, 1996

B Mizzou

- Lovell,S.C. et al. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins. 2003
- Lindahl, E.,Hess,B.&van der Spoel,D.GROMACS 3.0:a package for molecular simulation and trajectory analysis. J.Mol.Mod, 2001
- Zemla, A. LGA: a method for finding 3d similarities in protein structures. Nucl,Ac,Res. 2003

![](_page_58_Picture_8.jpeg)

#### References

Sims, G.E.&Kim,S-.H. Proc. Natl. Acad. Sci. 2005

- Moult J, Fidelis K, Kryshtafovych A, Rost B, Hubbard T, Tramontano A. Critical assessment of methods of protein structure prediction – round VII. Proteins. 2006
- Cozzetto D, Kryshtafovych A, Ceriani M, Tramontano A. Assessment of predictions in the model quality assessment category. Protein. 2007
- Zhou H, Zhou Y. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci, 2002.
- Cheng J, Baldi P. A machine learning information retrieval approach to protein fold recognition. Bioinformatics. 2006
- Zhou H, Zhou Y. Quantifying the effect of burial of amino acid residues on protein stability. Proteins. 2004
- Zhou H, Zhou Y. Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. Proteins. 2005.

#### References

✤ Zhou H, Zhou Y. SPARKS 2 and SP3 servers in CASP6. Proteins. 2005.

- Simons K, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring functions. J Mol Biol 1997.
- Chivian D, Kim D, Malmstrom L, Bradley P, Robertson T, Murphy P, Strauss C, Bonneau R, Rohl C, Baker D. Automated prediction of CASP 5 structures using the Robetta server. Proteins 2003.
- Bradley P, Malmstrom L, Qian B, Schonbrun J, Chivian D, Kim D, Meiler J, Misura K, Baker D. Free modeling with Rosetta in casp6. Proteins 2005.
- Chivian D, Kim D, Malmstrom L, Schonbrun J, Rohl C, Baker D. Prediction of CASP6 structures using automated robetta protocols. Proteins. 2005
- Pollastri G, Baldi P, Fariselli P, Casadio R. Prediction of coordination number and relative solvent accessibility in proteins. Proteins 2002
- Cheng J, Randall A, Sweredoski M, Baldi P. SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res 2005.

![](_page_61_Picture_0.jpeg)

# Thank you!

# **Q** & **A**

#### Email: rcrg4@mail.missouri.edu

![](_page_61_Picture_4.jpeg)