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Abstract 

Protein structure prediction has been a “grand 
challenge” problem in the structure biology over the 
last few decades. Protein quality assessment plays a 
very important role in protein structure prediction. In 
the paper, we propose a new protein quality 
assessment method which can predict both local and 
global quality of the protein 3D structural models. Our 
method uses both multi and single model quality 
assessment method for global quality assessment, and 
uses chemical, physical, geo-metrical features, and 
global quality score for local quality assessment. 
CASP9 targets are used to generate the features for 
local quality assessment. We evaluate the performance 
of our local quality assessment method on CASP10, 
which is comparable with two stage-of-art QA 
methods based on the average absolute distance 
between the real and predicted distance. In addition, 
we blindly tested our method on CASP11, and the 
good performance shows that combining single and 
multiple model quality assessment method could be a 
good way to improve the accuracy of model quality 
assessment, and the random forest technique could be 
used to train a good local quality assessment model.  

1. Introduction 

The protein structure prediction has been defined as 
one of the grand challenges problem in bioinformatics 
and computational biology, and still not solved over 
the last several decades [1]. With the development of 
computer, a huge quantity of computational methods 
has been generated to predict the protein tertiary 

structure from the amino acid [2-7]. These methods 
are mainly divided into the following classes: the 
template-based methods [4, 7], which uses the known 
protein structure determined by biology experiment as 
template to predict the structure of new query protein 
sequence; the template free methods [5, 6], which try 
to predict the protein structure from the amino acid 
sequence without directly using any known protein 
structures; hybrid methods [2, 3, 8], which takes 
advantage of the previous two different methods, and 
generate more accurate protein structures. For all of 
these different protein structure prediction methods, 
there is one common important and unsolved problem: 
which predicted protein structure model is closer to 
the truth without knowing the native protein structure? 
That is the protein quality assessment (QA) problem. 
The model mentioned in this paper represents protein 
3D structural model. The protein quality assessment is 
very useful for selecting the good models from the 
model pool, to refine the predicted models, and etc 
[9]. In general, there are two different qualities for the 
predicted protein model: local and global quality. The 
global quality score shows how close of the predicted 
model to the native structure, and the local quality 
score shows how close of each residues in the 
predicted model to the native structure. There are two 
different strategies to evaluate the quality of a 
predicted model [10]: multi-model methods [9, 11-15] 
and single-model methods [16-20]. Multi-model 
methods use pairwise or clustering technique to 
compare the similarity of each model against all 
others, and then define the good model as the one 
which is most similar to all other model. This method 
works well when a large proportion of the model pool 
has good quality, such as the case of easy template-
based modeling. However, it may fail when a 
significant portion of low quality modes are 
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dominating the pairwise model comparison since they 
are very similar to each other [10]. The single-model 
[16-20] methods predict the predicted protein model’s 
quality without using the information of other models.  

In this paper, we introduce a hybrid method to 
predict the global quality score of the input models, 
and one random forest based method to predict the 
local quality score. For the global quality assessment, 
the pairwise score [10] is generated from the model 
pool, and an improved version of model evaluator [21] 
(model check2 score) is also calculated. Either the pair 
score, or model check2 score is used as the final 
global quality score. For the local quality assessment, 
the local features are generated from physical, 
chemical, and geometrical respective[22] using sliding 
window size 15 centered on a target residue, and also 
using the global features from the whole model. 
Random forest is an ensemble classification which 
uses tree-structured classifiers. Random forest grows a 
large number of decision trees, trains them applying 
the general technique of bootstrap aggregating 
(bagging). The predictions are determined by majority 
vote of trees. Because the ensemble reduces variance, 
random forest is robust to change in data, irrelevant 
features, and unbalanced class distribution. Random 
forest showed excellent performance in broad 
classification tasks [23], which is generally 
comparable to that of other ensemble classifiers such 
as AdaBoost [24] or traditional machine learning 
classification algorithm such as SVM [10, 25] or Deep 
Learning Networks [26]. 

The rest of the paper is organized as follows: in the 
methods section, we will describe the method we use 
to predict the local and global quality of the input 
models; in the discussion section, we will evaluate the 
performance of our method on CASP10, and compare 
our method with other methods, and then discuss our 
method’s performance; in the conclusion section, we 
summarize our work. 

2. Results and discussion 

The global quality assessment is tested on CASP10 
targets, and also blindly benchmarked on CASP11 
targets. We trained our local quality assessment model 
based on CASP9 targets, and five cross validation is 
used for training the random forest model. 

We first evaluate the performance of our global 
quality assessment method, and then evaluate the 
performance of our local quality assessment. 

2.1. Evaluation of global quality 
predictions 

Our global quality assessment method is a hybrid 
method, and we choose the maximum pairwise GDT-
TS score 0.2 as the threshold to decide which method 
should be used for the input target, either pairwise 
method or model check2. Figure 1 shows the average 
correlation of pairwise method for CASP10 stage1 
and stage2 targets with different maximum pairwise 
score. The x-axis describes maximum pairwise score 
threshold for all targets. The y-axis shows the average 
correlation of all targets within the x threshold. This 
figures shows that as the maximum pairwise score 
decreases, the performance of pairwise method also 
decreases for the CASP10 stage1 targets, and the 
performance decreases a lot between the maximum 
pairwise score threshold 0.25 to 0.3 on CASP10 
stage2 targets. Considering the performance of 
pairwise method on CASP10 targets, finally we decide 
to use the threshold 0.2 to decide whether we use 
pairwise method. 

Table 1 and Table 2 show the average correlation 
and loss of our global quality assessment method on 
CASP10 stage1 and stage2 targets respectively. We 
also include the performance of other top groups’ 
method, such as ModFOLDclust2 method which is 
based on clustering technique, and ProQ2 method 
which is one of the best single quality assessment 
method on CASP10. As the table shows, the pairwise 
method ModFOLDclust2 performs better than the 
single quality assessment ProQ2 method from the 
respective of average correlation, overall correlation 
and loss. However, the difference between them 
becomes less on stage2, and the loss between 
ModFOLDclust2 and ProQ2 is the same on stage2. 
This tells us that the single QA method has the similar 
ability to find out the best model out of the model pool 
comparing with the pairwise method. As our 
MULTICOM-REFINE server, we take the advantage 
of both single and pairwise QA method, and the 
results show that our method gets better performance 
on both stage1 and stage2 comparing with the state-of-
art QA methods, e.g, the average correlation of our 
method on stage1 is better than ProQ2, and the loss on 
stage1 is less than ModFOLDclust2, and our method 
has the biggest average correlation comparing with 
other two methods on stage2. 

As we know that pairwise model assessment 
methods worked better when a large portion of models 
in the pool were of good quality, whereas single-
model quality assessment methods performed better 
on some hard targets when only a small portion of 



models in the pool were of reasonable quality [10], so 
it would be interest to see the performance of different 
methods on the human targets of CASP10. Table 3 
and Table 4 show the performance of our global 
quality assessment method on stage1 and stage2 of 
human targets respectively, and we also include the 
other group’s method like ModFOLDclust2 and 
ProQ2 method. Indeed, we can see from the table, the 
pairwise and single QA method gets similar 
performance on the human targets. Moreover, as we 
can see from Table 3, the average correlation of 
ProQ2 on human targets is 0.58, which is the same as 
the pairwise method ModFOLDclust2 (the average 
correlation on stage1 of all targets is 0.68). The 
average correlation of MULTICOM-REFINE on 
stage1 is similar to other methods, and the loss is the 
smallest between ProQ2 and ModFOLDclust2 
method. Similar pattern can be found on stage2 for 
MULTICOM-REFINE. Overall, MULTICOM-
REFINE gets better performance on both stage1 and 
stage2 of CASP10. In addition, our method attends 
CASP11, and we also show the performance of our 
method on stage1 and stage2 for all CASP11 targets 
comparing with ModFOLDclust2 and ProQ2 method 
at Table 5 and Table 6. We can find out from Table 5 
that our method is better than state-of-art single model 
QA method ProQ2 based on average correlation or 
loss, and is better than ModFOLDclust2 based on the 
average correlation also. Table 6 shows that our 
method gets similar performance comparing with 
ModFOLDclust2 on stage2, and better that ProQ2 
method. 

2.2. Evaluation of local quality 
predictions 

We evaluate the performance of our local quality 
assessment method on CASP10 targets on stage1 and 
stage2. In order to make comparison with other state-
of-art local quality assessment methods, we also 
evaluate the ProQ2 (single model quality assessment 
tool) and ModFOLDclust2 (multi-model quality 
assessment tool).  In order to evaluate the 
performance, we calculate the absolute distance 
difference between real and predicted local distance 
for each residue. Smaller difference means higher 
accurate of the predictions.  Figure 2 and Figure 3 
shows the relationship of the real and predicted 
distance of 98 CASP10 targets on stage1 and stage2 
respectively. The x-axis is the real distance between 
the native and model, which is divided in to 20 bins. 
The y-axis shows the average of absolute difference 
between real and predicted distance in each real 
distance bin. From these two figures, we can see that 
our MULTICOM-REFINE’s new local quality 
assessment method based on random forest is 

comparable with the state-of-art local quality 
assessment method. Especially when the real distance 
is less than 7 angstrom, the average absolute 
difference between real and our prediction is very 
close to the other two methods. Our method even has 
smaller average absolute difference comparing with 
the other two methods, e.g, for 98 CASP10 targets on 
stage2, the average absolute difference when the real 
distance is 3 angstrom is 0.61, 0.88, and 1.33 for 
MULTICOM-REFINE, ProQ2, and ModFOLDclust2 
respectively. We may also notice that when the real 
distance is larger than 7, the clustering method 
ModFOLDclust2 works better than single model 
quality assessment ProQ2 and our method. There 
could be two reasons that our method doesn’t perform 
well when the real distance is large. The first reason is 
that our method tends to predict smaller distance, and 
we set a threshold 15 for all predictions, so that there 
is no prediction larger than 15 for our method. The 
second reason could be in the training data, we 
involve more accurate models, so that our trained 
model is more likely to predict small distance for each 
residue. 

3. Conclusions 

In this paper, we describe a local and global quality 
assessment method. Our global quality assessment 
method takes advantage of pairwise and single-model 
QA method, and generates better performance 
comparing with pairwise method and the single-model 
QA method. We also evaluate the performance of our 
method on hard targets, it shows that our method 
consistently gets better performance comparing with 
two state-of-art quality assessment method ProQ2 and 
ModFOLDclust2. For the local quality assessment 
part, we evaluate our method’s performance on 
CASP10 targets, and it shows that our method is 
comparable with the other two state-of-art model 
quality assessment method. In the future, we plan to 
add more training data to improve the accuracy of our 
local quality assessment method, and consider 
influence of domains for training the local quality 
assessment model from the protein structure. Also for 
the global quality assessment method, we plan to 
rigorously test it on larger dataset, and find other 
better way to combine the pairwise and single-model 
methods. Overall, we believe our method performs 
well on the CASP10 targets and also has good 
performance on CASP11, which shows the potential 
of combining pairwise and single-model method, and 
also there are a lot of improvements for the local 
quality assessment method. The web server is built for 
p u b l i c u s e o f o u r m e t h o d a t : h t t p : / /
calla.rnet.missouri.edu/rfqa/. 



4. Methods 

The global quality assessment of this paper is a 
hybrid method, and the local quality assessment of 
this paper is a single model method, which is trained 
by random forest technique on CASP9 targets. The 
method to predict the global and local quality scores 
are introduced in the following sections. 

4.1. Global quality assessment method 

First of all, the improved version of model evaluator 
model check2 is used to calculate the score for each 
input model. Second, while the number of models is 
larger than one, the pairwise method is applied to the 
input model pool [10]. The GDT-TS score of each 
model against all other model is calculated using TM-
score [27], and the average GDT-TS score is 
calculated for each model as the quality of that model. 
Finally, the maximum of GDT-TS score among the 
model pool is used to decide which score to be used as 
the global quality score as the model pool. The 
pairwise score is used when the maximum GDT-TS 
score is larger than 0.2, otherwise, model check2 score 
is used. 

4.2. Local quality features preparation 

All CASP9 targets are used to generate the local 
quality features. There are two different types of local 
quality features, one is global features coming from 
the quality of the model, and the other is local features 
coming from the amino acids with sliding window 
size 15. For each residue, we generate a feature set for 
making local quality assessment. In total, 4,719,526 
feature sets are generated from CASP9 targets. 
According to the real quality of each feature set, we 
divide the data into 5 classes. For example, the first 
class is that all feature sets with the real quality from 0 
to 0.2. We randomly select 10,000 feature sets from 
each class due to the time complexity of training 
random forest model with large training data set. The 
RandomForest package in R [28] is used for training 
the random forest model. The global features includes 
the difference between secondary structure and 
solvent accessibility predicted by Spine X [29] and 
SSpro4 [30] from the protein sequence and that of a 
model parsed by DSSP [22], the pairwise Euclidean 
distance score which is calculated by the average 
Euclidean distance of the model for all pairwise amino 
acid pairs divided by the same distance of the 
extended structure for the model, secondary structure 
penalty score which is calculated from the mismatch 

of helix and sheet between the predicted secondary 
structure and the one parsed from the model [20],  
surface polar score which is calculated by the 
fractional area of exposed nonpolar residues [20], 
weighted exposed area score which is the weighted 
exposed area divide by the whole area [20], total 
surface area score which is the total surface area 
divided by the whole area  [20]. The local features for 
each amino acid is coming from the fragment with 
sliding window size 15, including the amino acids 
encoded by a 20-digit vector of 0 and 1, secondary 
structure difference, pairwise Euclidean distance 
score, secondary structure penalty score, surface polar 
score, weighted exposed area score, and total area 
score generated from the fragment. 

4.3. Train a model for local quality 
assessment by random forest 

We divided the 10,000 feature sets which were 
explained above into 10 equal-size subsets for 10-fold 
cross validation. Nine subsets were used for training 
and the remaining subset was used for validation. A 
number of feature sets were randomly selected from 
each subset for constructing decision trees and 
standard decision tree training algorithm was applied. 
After training, the average probability predicted by 
these trees was calculated as the local quality score. 
This procedure was repeated 10 times and the 
sensitivity and specificity were computed across the 
10 trials. 
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Figure 
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Figure 1. The average correlation of pairwise method 
for CASP10 stage1 and stage2 targets with different 

maximum pairwise score 

!  



Figure 2. The absolute difference between real and predicted distance against the real distance in 20 bins for 98 
CASP10 targets on stage1. 

!  

Figure 3. The absolute difference between real and predicted distance against the real distance in 20 bins for 98 
CASP10 targets on stage2. 

Table 1. The average correlation (Ave. Corr.), overall 
correlation (Over. Corr.), and average GDT-TS loss 
(Ave. loss) of MULTICOM-REFINE server, proq2, 
and ModFOLDclust2 on Stage1 of CASP10. 

Table 2. The average correlation (Ave. Corr.), overall 
correlation (Over. Corr.), and average GDT-TS loss 
(Ave. loss) of MULTICOM-REFINE server, ProQ2, 
and ModFOLDclust2 on Stage2 of CASP10. 

Table 3. The average correlation (Ave. Corr.), overall 
correlation (Over. Corr.), and average GDT-TS loss 
(Ave. loss) of MULTICOM-REFINE server, ProQ2, 
and ModFOLDclust2 on Stage1 of all human targets 
of CASP10. 

Stage1 of CASP10 A v e . 
Corr.

O v e r . 
Corr.

A v e . 
loss

M U L T I C O M -
REFINE

0.68 0.81 0.05

Proq2 0.58 0.61 0.07

ModFOLDclust2 0.68 0.83 0.06

Stage2 of CASP10 A v e . 
Corr.

O v e r . 
Corr.

A v e . 
loss

M U L T I C O M -
REFINE

0.48 0.83 0.05

ProQ2 0.42 0.60 0.05

ModFOLDclust2 0.45 0.83 0.05

Stage1 of CASP10 A v e . 
Corr.

O v e r . 
Corr.

A v e . 
loss



Table 4. The average correlation (Ave. Corr.), overall 
correlation (Over. Corr.), and average GDT-TS loss 
(Ave. loss) of MULTICOM-REFINE server, ProQ2, 
and ModFOLDclust2 on Stage2 of all human targets 
of CASP10. 

Table 5. The average correlation (Ave. Corr.), overall 
correlation (Over. Corr.), and average GDT-TS loss 
(Ave. loss) of MULTICOM-REFINE server, ProQ2, 
and ModFOLDclust2 on Stage1 of all human targets 
of CASP11. 

Table 6. The average correlation (Ave. Corr.), overall 
correlation (Over. Corr.), and average GDT-TS loss 
(Ave. loss) of MULTICOM-REFINE server, ProQ2, 
and ModFOLDclust2 on Stage2 of all human targets 
of CASP11. 

M U L T I C O M -
REFINE

0.59 0.81 0.06

ProQ2 0.58 0.52 0.08

ModFOLDclust2 0.58 0.86 0.08

Stage2 of CASP10 A v e . 
Corr.

O v e r . 
Corr.

A v e . 
loss

M U L T I C O M -
REFINE

0.50 0.85 0.06

ProQ2 0.41 0.48 0.06

ModFOLDclust2 0.46 0.87 0.05

Stage1 of CASP11 A v e . 
Corr.

O v e r . 
Corr.

A v e . 
loss

M U L T I C O M -
REFINE

0.80 0.93 0.05

ProQ2 0.64 0.79 0.09

ModFOLDclust2 0.74 0.95 0.05

Stage2 of CASP11 A v e . 
Corr.

O v e r . 
Corr.

A v e . 
loss

M U L T I C O M -
REFINE

0.57 0.95 0.07

ProQ2 0.37 0.76 0.06

ModFOLDclust2 0.56 0.95 0.07


